1
|
High Expression of MicroRNA-200a/b Indicates Potential Diagnostic and Prognostic Biomarkers in Epithelial Ovarian Cancer. DISEASE MARKERS 2022; 2022:2751696. [PMID: 35371343 PMCID: PMC8975693 DOI: 10.1155/2022/2751696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/01/2022] [Indexed: 11/17/2022]
Abstract
Objective. To detect the expression levels of microRNA-200a/b (miR-200a/b) in tumor tissues and serum of patients with epithelial ovarian cancer (EOC) and to explore its clinical significance. Methods. A retrospective selection of 30 cases of benign ovarian disease or healthy physical examination (control group) and 55 cases of EOC patients. Real-time quantitative PCR was used to detect the expression level of miR-200a/b in tumor tissues and serum, and the miR-200a/b expresses relevance in the two types of samples were evaluated at the same time. Receiver operating characteristic curve (ROC) and Kaplan-Meier survival analysis were used to evaluate the diagnostic value of miR-200a/b expression and its influence on prognosis, respectively. Results. The serum and tissue miR-200a/b expression levels in EOC patients were higher than those in the control group (
), and there was a significant positive correlation between serum and tissue miR-200a/b expression (
,
and
,
). ROC analysis showed that the expression of serum miR-200a/b can distinguish EOC patients from the control group. In addition, there were significant differences in the TNM stage, tumor differentiation, and lymph node metastasis between the miR-200a/b high- and low-expression groups (
). Kaplan-Meier survival analysis found that the overall survival and disease-free survival of patients with high miR-200a/b expression were shorter than those of patients with low miR-200a/b expression (
). Conclusion. Upregulation of miR-200a/b expression is a common molecular event in EOC patients, and miR-200a/b can be used as a noninvasive biomarker for the diagnosis and prognosis of EOC.
Collapse
|
2
|
Bure IV, Nemtsova MV. Methylation and Noncoding RNAs in Gastric Cancer: Everything Is Connected. Int J Mol Sci 2021; 22:ijms22115683. [PMID: 34073603 PMCID: PMC8199097 DOI: 10.3390/ijms22115683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Despite recent progress, gastric cancer remains one of the most common cancers and has a high mortality rate worldwide. Aberrant DNA methylation pattern and deregulation of noncoding RNA expression appear in the early stages of gastric cancer. Numerous investigations have confirmed their significant role in gastric cancer tumorigenesis and their high potential as diagnostic and prognostic biomarkers. Currently, it is clear that these epigenetic regulators do not work alone but interact with each other, generating a complex network. The aim of our review was to summarize the current knowledge of this interaction in gastric cancer and estimate its clinical potential for the diagnosis, prognosis, and treatment of the disease.
Collapse
Affiliation(s)
- Irina V. Bure
- Laboratory of Medical Genetics, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Correspondence: ; Tel.: +49-915-069-2721
| | - Marina V. Nemtsova
- Laboratory of Medical Genetics, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
3
|
MiRNA-200C expression in Fanconi anemia pathway functionally deficient lung cancers. Sci Rep 2021; 11:4420. [PMID: 33627769 PMCID: PMC7904768 DOI: 10.1038/s41598-021-83884-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
The Fanconi Anemia (FA) pathway is essential for human cells to maintain genomic integrity following DNA damage. This pathway is involved in repairing damaged DNA through homologous recombination. Cancers with a defective FA pathway are expected to be more sensitive to cross-link based therapy or PARP inhibitors. To evaluate downstream effectors of the FA pathway, we studied the expression of 734 different micro RNAs (miRNA) using NanoString nCounter miRNA array in two FA defective lung cancer cells and matched control cells, along with two lung tumors and matched non-tumor tissue samples that were deficient in the FA pathway. Selected miRNA expression was validated with real-time PCR analysis. Among 734 different miRNAs, a cluster of microRNAs were found to be up-regulated including an important cancer related micro RNA, miR-200C. MiRNA-200C has been reported as a negative regulator of epithelial-mesenchymal transition (EMT) and inhibits cell migration and invasion by promoting the upregulation of E-cadherin through targeting ZEB1 and ZEB2 transcription factors. miRNA-200C was increased in the FA defective lung cancers as compared to controls. AmpliSeq analysis showed significant reduction in ZEB1 and ZEB2 mRNA expression. Our findings indicate the miRNA-200C potentially play a very important role in FA pathway downstream regulation.
Collapse
|
4
|
Howard S, Richardson S, Benyeogor I, Omosun Y, Dye K, Medhavi F, Lundy S, Adebayo O, Igietseme JU, Eko FO. Differential miRNA Profiles Correlate With Disparate Immunity Outcomes Associated With Vaccine Immunization and Chlamydial Infection. Front Immunol 2021; 12:625318. [PMID: 33692799 PMCID: PMC7937703 DOI: 10.3389/fimmu.2021.625318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Vaccine-induced immune responses following immunization with promising Chlamydia vaccines protected experimental animals from Chlamydia-induced upper genital tract pathologies and infertility. In contrast, primary genital infection with live Chlamydia does not protect against these pathologies. We hypothesized that differential miRNA profiles induced in the upper genital tracts (UGT) of mice correlate with the disparate immunity vs. pathologic outcomes associated with vaccine immunization and chlamydial infection. Thus, miRNA expression profiles in the UGT of mice after Chlamydia infection (Live EB) and immunization with dendritic cell (DC)-based vaccine (DC vaccine) or VCG-based vaccine (VCG vaccine) were compared using the NanoString nCounter Mouse miRNA assay. Of the 602 miRNAs differentially expressed (DE) in the UGT of immunized and infected mice, we selected 58 with counts >100 and p-values < 0.05 for further analysis. Interestingly, vaccine immunization and Chlamydia infection induced the expression of distinct miRNA profiles with a higher proportion in vaccine-immunized compared to Chlamydia infected mice; DC vaccine (41), VCG vaccine (23), and Live EB (15). Hierarchical clustering analysis showed notable differences in the uniquely DE miRNAs for each experimental group, with DC vaccine showing the highest number (21 up-regulated, five down-regulated), VCG vaccine (two up-regulated, five down-regulated), and live EB (two up-regulated, four down-regulated). The DC vaccine-immunized group showed the highest number (21 up-regulated and five down-regulated compared to two up-regulated and four down-regulated in the live Chlamydia infected group). Pathway analysis showed that the DE miRNAs target genes that regulate several biological processes and functions associated with immune response and inflammation. These results suggest that the induction of differential miRNA expression plays a significant role in the disparate immunity outcomes associated with Chlamydia infection and vaccination.
Collapse
Affiliation(s)
- Simone Howard
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Shakyra Richardson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Ifeyinwa Benyeogor
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
| | - Yusuf Omosun
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Kamran Dye
- Department of Chemistry, Morehouse College, Atlanta, GA, United States
| | - Fnu Medhavi
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Stephanie Lundy
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Olayinka Adebayo
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Joseph U. Igietseme
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Francis O. Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
5
|
MicroRNAs and Their Influence on the ZEB Family: Mechanistic Aspects and Therapeutic Applications in Cancer Therapy. Biomolecules 2020; 10:biom10071040. [PMID: 32664703 PMCID: PMC7407563 DOI: 10.3390/biom10071040] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
Molecular signaling pathways involved in cancer have been intensively studied due to their crucial role in cancer cell growth and dissemination. Among them, zinc finger E-box binding homeobox-1 (ZEB1) and -2 (ZEB2) are molecules that play vital roles in signaling pathways to ensure the survival of tumor cells, particularly through enhancing cell proliferation, promoting cell migration and invasion, and triggering drug resistance. Importantly, ZEB proteins are regulated by microRNAs (miRs). In this review, we demonstrate the impact that miRs have on cancer therapy, through their targeting of ZEB proteins. MiRs are able to act as onco-suppressor factors and inhibit the malignancy of tumor cells through ZEB1/2 down-regulation. This can lead to an inhibition of epithelial-mesenchymal transition (EMT) mechanism, therefore reducing metastasis. Additionally, miRs are able to inhibit ZEB1/2-mediated drug resistance and immunosuppression. Additionally, we explore the upstream modulators of miRs such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as these regulators can influence the inhibitory effect of miRs on ZEB proteins and cancer progression.
Collapse
|
6
|
Kunigenas L, Stankevicius V, Dulskas A, Budginaite E, Alzbutas G, Stratilatovas E, Cordes N, Suziedelis K. 3D Cell Culture-Based Global miRNA Expression Analysis Reveals miR-142-5p as a Theranostic Biomarker of Rectal Cancer Following Neoadjuvant Long-Course Treatment. Biomolecules 2020; 10:E613. [PMID: 32316138 PMCID: PMC7226077 DOI: 10.3390/biom10040613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/05/2020] [Accepted: 04/13/2020] [Indexed: 01/21/2023] Open
Abstract
Altered expression of miRNAs in tumor tissue encourages the translation of this specific molecular pattern into clinical practice. However, the establishment of a selective biomarker signature for many tumor types remains an inextricable challenge. For this purpose, a preclinical experimental design, which could maintain a fast and sensitive discovery of potential biomarkers, is in demand. The present study suggests that the approach of 3D cell cultures as a preclinical cancer model that is characterized to mimic a natural tumor environment maintained in solid tumors could successfully be employed for the biomarker discovery and validation. Subsequently, in this study, we investigated an environment-dependent miRNA expression changes in colorectal adenocarcinoma DLD1 and HT29 cell lines using next-generation sequencing (NGS) technology. We detected a subset of 16 miRNAs differentially expressed in both cell lines cultivated in multicellular spheroids compared to expression levels in cells grown in 2D. Furthermore, results of in silico miRNA target analysis showed that miRNAs, which were differentially expressed in both cell lines grown in MCS, are involved in the regulation of molecular mechanisms implicated in cell adhesion, cell-ECM interaction, and gap junction pathways. In addition, integrins and platelet-derived growth factor receptors were determined to be the most significant target genes of deregulated miRNAs, which was concordant with the environment-dependent gene expression changes validated by RT-qPCR. Our results revealed that 3D microenvironment-dependent deregulation of miRNA expression in CRC cells potentially triggers essential molecular mechanisms predominantly including the regulation of cell adhesion, cell-cell, and cell-ECM interactions important in CRC initiation and development. Finally, we demonstrated increased levels of selected miR-142-5p in rectum tumor tissue samples after neoadjuvant long course treatment compared to miR-142-5p expression levels in tumor biopsy samples collected before the therapy. Remarkably, the elevation of miR-142-5p expression remained in tumor samples compared to adjacent normal rectum tissue as well. Therefore, the current study provides valuable insights into the molecular miRNA machinery of CRC and proposes a potential miRNA signature for the assessment of CRC in further clinical research.
Collapse
Affiliation(s)
- Linas Kunigenas
- National Cancer Institute, LT-08660 Vilnius, Lithuania; (L.K.); (A.D.); (E.B.); (E.S.)
- Life Sciences Center, Institute of Biosciences, Vilnius University, LT-08412 Vilnius, Lithuania
| | - Vaidotas Stankevicius
- National Cancer Institute, LT-08660 Vilnius, Lithuania; (L.K.); (A.D.); (E.B.); (E.S.)
- Life Sciences Center, Institute of Biotechnology, Vilnius University, LT-08412 Vilnius, Lithuania
| | - Audrius Dulskas
- National Cancer Institute, LT-08660 Vilnius, Lithuania; (L.K.); (A.D.); (E.B.); (E.S.)
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-08406 Vilnius, Lithuania
- University of Applied Sciences, Faculty of Health Care, LT-08303 Vilnius, Lithuania
| | - Elzbieta Budginaite
- National Cancer Institute, LT-08660 Vilnius, Lithuania; (L.K.); (A.D.); (E.B.); (E.S.)
| | - Gediminas Alzbutas
- Thermo Fisher Scientific, LT-02241 Vilnius, Lithuania;
- Institute of Informatics, Faculty of Mathematics and Informatics, Vilnius University, LT-08303 Vilnius, Lithuania
| | - Eugenijus Stratilatovas
- National Cancer Institute, LT-08660 Vilnius, Lithuania; (L.K.); (A.D.); (E.B.); (E.S.)
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-08406 Vilnius, Lithuania
| | - Nils Cordes
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, Technische Universität, D–01307 Dresden, Germany;
- Helmholtz–Zentrum Dresden–Rossendorf, Institute of Radiooncology–OncoRay, D–01328 Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, D–69192 Heidelberg, Germany
- German Cancer Research Center (DKFZ), D–69192 Heidelberg, Germany
| | - Kestutis Suziedelis
- National Cancer Institute, LT-08660 Vilnius, Lithuania; (L.K.); (A.D.); (E.B.); (E.S.)
- Life Sciences Center, Institute of Biosciences, Vilnius University, LT-08412 Vilnius, Lithuania
| |
Collapse
|
7
|
Bure IV, Nemtsova MV, Zaletaev DV. Roles of E-cadherin and Noncoding RNAs in the Epithelial-mesenchymal Transition and Progression in Gastric Cancer. Int J Mol Sci 2019; 20:ijms20122870. [PMID: 31212809 PMCID: PMC6627057 DOI: 10.3390/ijms20122870] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023] Open
Abstract
The epithelial–mesenchymal transition (EMT) is thought to be at the root of invasive and metastatic cancer cell spreading. E-cadherin is an important player in this process, which forms the structures that establish and maintain cell–cell interactions. A partial or complete loss of E-cadherin expression in the EMT is presumably mediated by mechanisms that block the expression of E-cadherin regulators and involve the E-cadherin-associated transcription factors. The protein is involved in several oncogenic signaling pathways, such as the Wnt/β-catenin, Rho GTPase, and EGF/EGFR, whereby it plays a role in many tumors, including gastric cancer. Such noncoding transcripts as microRNAs and long noncoding RNAs—critical components of epigenetic control of gene expression in carcinogenesis—contribute to regulation of the E-cadherin function by acting directly or through numerous factors controlling transcription of its gene, and thus affecting not only cancer cell proliferation and metastasis, but also the EMT. This review focuses on the role of E-cadherin and the non-coding RNAs-mediated mechanisms of its expressional control in the EMT during stomach carcinogenesis.
Collapse
Affiliation(s)
- Irina V Bure
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.
| | - Marina V Nemtsova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.
- Research Centre for Medical Genetics, Moskvorechie st., 1, Moscow 115522, Russia.
| | - Dmitry V Zaletaev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.
- Research Centre for Medical Genetics, Moskvorechie st., 1, Moscow 115522, Russia.
| |
Collapse
|
8
|
Zhang LQ, Lu N. Role of miR-200c in early diagnosis of gastric cancer: Current status and prospects. Shijie Huaren Xiaohua Zazhi 2019; 27:382-388. [DOI: 10.11569/wcjd.v27.i6.382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors of the digestive tract, and its morbidity and mortality still rank the second among all cancers. The proportion of patients with advanced GC is higher, and their therapeutic effect is extremely poor. In recent years, numerous studies have shown that the content of miR-200c in GC patients is significantly increased, and the level of miR-200c is closely related to epithelial-mesenchymal transition and lymph node metastasis. Therefore, in-depth disclosure of the role of miR-200c in the diagnosis of GC will not only contribute to the early diagnosis of GC, but also help develop new effective treatment strategies and judge the prognosis of patients with GC. This article reviews the role of miR-200c in the early diagnosis of GC and discusses its application prospects.
Collapse
Affiliation(s)
- Ling-Qian Zhang
- Department of Oncology, Xinjiang Military Command General Hospital of PLA, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Ning Lu
- Department of Oncology, Xinjiang Military Command General Hospital of PLA, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
9
|
Zhang L, Kang W, Lu X, Ma S, Dong L, Zou B. LncRNA CASC11 promoted gastric cancer cell proliferation, migration and invasion in vitro by regulating cell cycle pathway. Cell Cycle 2018; 17:1886-1900. [PMID: 30200804 DOI: 10.1080/15384101.2018.1502574] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this study, we aimed to investigate the effects of lncRNA CASC11 on gastric cancer (GC) cell progression through regulating miR-340-5p and cell cycle pathway. Expressions of lncRNA CASC11 in gastric cancer tissues and cell lines were determined by qRT-PCR. Differentially expressed lncRNAs, mRNAs and miRNAs were screened through microarray analysis. The relationship among CASC11, CDK1 and miR-340-5p was predicted by TargetScan and validated through dual luciferase reporter assay. Western blot assay examined the protein level of CDK1 and several cell cycle regulatory proteins. GO functional analysis and KEGG pathway analysis were used to predict the association between functions and related pathways. Cell proliferation was determined by CCK-8 assays. Cell apoptosis and cell cycle were detected by flow cytometry assay. CASC11 was highly expressed in GC tissues and cell lines. Knockdown of CASC11 inhibited GC cell proliferation, promoted cell apoptosis and blocked cell cycle. KEGG further indicated an enriched cell cycle pathway involving CDK1. QRT-PCR showed that miR-340-5p was down-regulated in GC cells tissues, while CDK1 was up-regulated. Furthermore, CASC11 acted as a sponge of miR-340-5p which directly targeted CDK1. Meanwhile, miR-340-5p overexpression promoted GC cell apoptosis and induced cell cycle arrest, while CDK1 overexpression inhibited cell apoptosis and accelerated cell cycle. Our study revealed the mechanism of CASC11/miR-340-5p/CDK1 network in GC cell line, and suggested that CASC11 was a novel facilitator that exerted a biological effect by activating the cell cycle signaling pathway. This finding provides a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Li Zhang
- a Department of Gastroenterology , the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Wenquan Kang
- b Department of Gastroenterology, Shenzhen Sixth People's Hospital (Nanshan Hospital) , Huazhong University of Science and Technology Union Shenzhen Hospital , Shenzhen , China
| | - Xiaolan Lu
- a Department of Gastroenterology , the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Shiyang Ma
- a Department of Gastroenterology , the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Lei Dong
- a Department of Gastroenterology , the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Baicang Zou
- a Department of Gastroenterology , the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
10
|
Chen H, Dai G, Cai Y, Gong Q, Wu W, Gao M, Fei Z. Vasodilator-stimulated phosphoprotein (VASP), a novel target of miR-4455, promotes gastric cancer cell proliferation, migration, and invasion, through activating the PI3K/AKT signaling pathway. Cancer Cell Int 2018; 18:97. [PMID: 30002604 PMCID: PMC6038240 DOI: 10.1186/s12935-018-0573-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/25/2018] [Indexed: 02/03/2023] Open
Abstract
Background MicroRNAs (miRNAs) are small non-coding RNAs which play important roles in the carcinogenesis of gastric cancer (GC). Expression profiling of miRNAs in paired gastric cancer and adjacent normal gastric tissues has demonstrated that miR-4455 is down-regulated in gastric cancer tissues, but its functional role in the carcinogenesis of GC had not previously been investigated. Aims The purpose of this study was to investigate the functional and biological mechanisms of miR-4455 in the progression of GC, in vitro. Methods Expression of miR-4455 was compared in human GC tissue samples and paired adjacent normal tissue samples. The in vitro effects of miR-4455 expression in MGC-803 cells on their proliferation, invasion, and migration were assessed by MTT assays and 5-bromo-2′-deoxyuridine staining, matrigel-invasion analysis and wound healing assays. Bioinformatics analysis (using PicTar, target scan and miRBase target) was used to identify potential targets for miR-4455, and the luciferase reporter assay, qRT-PCR and Western-blotting analyses were used to confirm VASP as the target of miR-4455. In addition, the effects of downregulation of VASP on the activation of PI3K/AKT signaling pathway were measured using Western-blot analysis. Results The expression of miR-4455 was markedly down-regulated in gastric cancer tissues vs. adjacent normal tissues, and miR-4455 expression inhibited the proliferation, invasion and migration of MGC-803 GC cells in vitro. Luciferase reporter assays revealed that miR-4455 inhibited VASP expression by targeting the 3′-UTR sequence of VASP. Furthermore, silencing of VASP markedly inhibited the activation of the PI3K/AKT signaling pathway. Conclusion Our results suggest that miR-4455 functions as a tumor suppressor in gastric cancer, by targeting VASP leading to activation of the PI3K/AKT signaling pathway and the inhibition of VASP mediated proliferation, migration and invasion of gastric cancer cells. Electronic supplementary material The online version of this article (10.1186/s12935-018-0573-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haiqun Chen
- 1Department of General Surgery, The ChongMing Branch of XinHua Hospital, The Affiliated Hospital of Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Gang Dai
- 1Department of General Surgery, The ChongMing Branch of XinHua Hospital, The Affiliated Hospital of Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yiting Cai
- 1Department of General Surgery, The ChongMing Branch of XinHua Hospital, The Affiliated Hospital of Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Qinhao Gong
- 1Department of General Surgery, The ChongMing Branch of XinHua Hospital, The Affiliated Hospital of Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Wei Wu
- 1Department of General Surgery, The ChongMing Branch of XinHua Hospital, The Affiliated Hospital of Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Min Gao
- 1Department of General Surgery, The ChongMing Branch of XinHua Hospital, The Affiliated Hospital of Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Zhewei Fei
- 2Department of General Surgery, XinHua Hospital, The Affiliated Hospital of Shanghai Jiao Tong University, No. 1665, Kong Jiang Road, Shanghai, 200240 China
| |
Collapse
|