1
|
Ye Y, Huang Y, Pan J. Exploration of the diagnostic and prognostic roles of decreased autoantibodies in lung cancer. Front Immunol 2025; 16:1538071. [PMID: 39949782 PMCID: PMC11821978 DOI: 10.3389/fimmu.2025.1538071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction Tumor-associated antigens (TAA) are proteins expressed during the growth and development of tumor cells, and TAA autoantibodies (TAAbs) can be detected in the serum of lung cancer patients, which can be utilized in the early screening of lung cancer. Almost all the TAAbs applied for diagnosis are those elevated, however, there are still large numbers of autoantibodies detected to decrease in tumor serums, and their functions were rarely known. Diagnosing malignant small lung nodules (≤3cm) in CT scans remains a challenge in clinical practice. Methods In this study, we applied the HuProt array and the bioinformatics analysis to assess the diagnostic values of the decreased autoantibodies in lung cancers. Results In total, 15 types of decreased autoantibodies were identified, and 6 of them were constructed into a predictive model for early lung cancer, reaching a sensitivity of 76.19% and a specificity of 55.74%. We combined with 4 elevated TAAbs, the sensitivity and the specificity of the 10-marker model can attain 80.0% and 87.0%, respectively, which is higher than that of the commonly used 7-TAAbs model in diagnosis for early-stage lung cancer. Moreover, 5 of the decreased autoantibodies can also be applied for supervising bone metastasis in lung adenocarcinoma. A follow-up process for 13 patients diagnosed with early-stage lung cancer revealed that 10 of the 15 decreased autoantibodies would recover to a higher level after the tumor was resected. Bioinformatic analysis indicated that the 15 biomarkers were strongly correlated with the prognosis of lung cancer patients. Conclusion We confirmed the importance of the decreased autoantibodies in lung cancer, providing new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ying Ye
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Jianbo Pan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Tao R, Huang R, Yang J, Wang J, Wang K. Comprehensive analysis of the clinical and biological significances of cholesterol metabolism in lower-grade gliomas. BMC Cancer 2023; 23:692. [PMID: 37488496 PMCID: PMC10364387 DOI: 10.1186/s12885-023-10897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/27/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND As a component of membrane lipids and the precursor of oxysterols and steroid hormones, reprogrammed cholesterol metabolism contributes to the initiation and progression of multiple cancers. Thus, we aim to further investigate the significances of cholesterol metabolism in lower-grade gliomas (LGGs). METHODS The present study included 413 LGG samples from TCGA RNA-seq dataset (training cohort) and 172 LGG samples from CGGA RNA-seq dataset (validation cohort). The cholesterol metabolism-related signature was identified by the LASSO regression model. Bioinformatics analyses were performed to explore the functional roles of this signature in LGGs. Kaplan-Meier and Cox regression analyses were enrolled to estimate prognostic value of the risk signature. RESULTS Our findings suggested that cholesterol metabolism was tightly associated clinicopathologic features and genomic alterations of LGGs. Bioinformatics analyses revealed that cholesterol metabolism played a key role in immunosuppression of LGGs, mainly by promoting macrophages polarization and T cell exhaustion. Kaplan-Meier curve and Cox regression analysis showed that cholesterol metabolism was an independent prognostic indicator for LGG patients. To improve the clinical application value of the risk signature, we also constructed a nomogram model to predict the 1-, 3- and 5-year survival of LGG patients. CONCLUSION The cholesterol metabolism was powerful prognostic indicator and could serve as a promising target to enhance personalized treatment of LGGs.
Collapse
Affiliation(s)
- Rui Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ruoyu Huang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Jingchen Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Kuanyu Wang
- Department of stereotactic radiosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
3
|
Liu Z, Zhang J, Shen D, Hu X, Ke Z, Ehrich Lister IN, Sihombing B. Prognostic significance of CKAP2L expression in patients with clear cell renal cell carcinoma. Front Genet 2023; 13:873884. [PMID: 36699449 PMCID: PMC9870291 DOI: 10.3389/fgene.2022.873884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Cytoskeleton-associated protein 2-like protein (CKAP2L) is thought to promote the progression of glioma, breast cancer, and ovarian cancer. However, the role of cytoskeleton-associated protein 2-like protein in clear cell renal cell carcinoma (ccRCC) is still unclear. The study aimed to investigate the roles and mechanisms of cytoskeleton-associated protein 2-like protein in clear cell renal cell carcinoma. Methods: The level of cytoskeleton-associated protein 2-like protein in tumors was explored by using UALCAN and Oncomine databases. Gene expression datasets of clear cell renal cell carcinoma from The Cancer Genome Atlas and Gene Expression Omnibus (GEO) were also used to validate the cytoskeleton-associated protein 2-like protein level in clear cell renal cell carcinoma. Survival analysis was performed to investigate the relationship between cytoskeleton-associated protein 2-like protein level and prognosis of clear cell renal cell carcinoma patients. Cox regression analysis was used for identifying the independent prognostic factors. Gene set enrichment analysis (GSEA), gene set variation analysis (GSVA), protein-protein interaction analysis, co-expression analysis, and immune infiltration analysis were used to explore the potential mechanisms of cytoskeleton-associated protein 2-like protein in clear cell renal cell carcinoma. Moreover, the levels of cytoskeleton-associated protein 2-like protein in clinical clear cell renal cell carcinoma tissues were also measured using RT-PCR, immunohistochemical analysis, and Western blotting. M1 macrophages and CD4+ T cells were also detected by immunohistochemistry between tumor and normal tissues. Results: The level of cytoskeleton-associated protein 2-like protein was upregulated in clear cell renal cell carcinoma according to multiple databases and experimental verification. Upregulated cytoskeleton-associated protein 2-like protein is an independent prognostic factor, which might activate the JAK-STAT signaling pathway, the P53 signaling pathway, the TGF-β signaling pathway, the WNT signaling pathway, etc., in clear cell renal cell carcinoma. Protein-protein interaction analysis and co-expression analysis suggest that cytoskeleton-associated protein 2-like protein might interact with some proliferation proteins. Immune infiltration analysis indicates that cytoskeleton-associated protein 2-like protein may affect the level of activated CD4+ memory T cells, M1 macrophages, CD8+ T cells, and neutrophils in clear cell renal cell carcinoma. More M1 macrophage infiltrations in tumor tissues with higher cytoskeleton-associated protein 2-like protein were validated by clear cell renal cell carcinoma tumor tissues. Conclusion: Cytoskeleton-associated protein 2-like protein is upregulated in clear cell renal cell carcinoma tissues, which may promote progression of the disease. Cytoskeleton-associated protein 2-like protein is a potential target for prognostic markers and a potential treatment target in clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Urology Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jun Zhang
- Department of Urinary Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui, China
| | - Deyun Shen
- Department of Urology Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuechun Hu
- Department of Urology Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zongpan Ke
- Department of Urology Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - I Nyoman Ehrich Lister
- Universitas Prima Indonesia (UNPRI), Medan, North Sumatra, Indonesia,*Correspondence: Bungaran Sihombing, ; I Nyoman Ehrich Lister,
| | - Bungaran Sihombing
- Universitas Prima Indonesia (UNPRI), Medan, North Sumatra, Indonesia,*Correspondence: Bungaran Sihombing, ; I Nyoman Ehrich Lister,
| |
Collapse
|
4
|
Zhang Y, Chen X, Chen H, Zhang Y. ZC3H13 Enhances the Malignancy of Cervical Cancer by Regulating m6A Modification of CKAP2. Crit Rev Immunol 2023; 43:1-13. [PMID: 37943149 DOI: 10.1615/critrevimmunol.2023049342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Sustained expression of zinc finger CCCH-type containing 13 (ZC3H13) in tumors is essential for cancer cell malignancy; however, our understanding of its clinical effects and mechanisms in cervical cancer (CC) is limited. In this study, we aimed to reveal the effect on CC progression of ZC3H13-mediated N6-methyladenosine (m6A) modification to stabilize cytoskeleton-associated protein 2 (CKAP2) expression. CC tissues and paired adjacent normal tissues were collected from 50 patients. qRT-PCR was used to clarify ZC3H13 and CKAP2 expression levels in the CC tissues. The functional roles of ZC3H13 and CKAP2 in CC were analyzed by detecting the changes in CC cell proliferation, migration, invasion, and tumor growth in vivo. The regulatory relationship between ZC3H13 and CKAP2 was investigated by confirming m6A modification levels and their expression correlation. ZC3H13 and CKAP2 were highly expressed in CC and linked with poor prognosis. We observed that ZC3H13 inhibition decreased CC cell proliferation, invasion, and migration, while its facilitation promoted CC cell malignancy. ZC3H13 mediated m6A modification of CKAP2 to enhance CKAP2 expression in CC cells. Furthermore, CKAP2 overexpression partially restored the malignant phenotypic promotion induced by ZC3H13 overexpression in CC cells. In summary, this study revealed that ZC3H13-mediating m6A modification of CKAP2 promotes CC development. This finding should be conducive to an understanding of the role of ZC3H13-m6A-CKAP2 in CC and should provide an effective therapeutic target for this cancer.
Collapse
Affiliation(s)
- Yuan Zhang
- Obstetrics Department, Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan 430015, Hubei, China
| | - Xiaoqing Chen
- Medical Experimental Center, Medical College, Jianghan University, Wuhan 430056, Hubei, China
| | - Huiqun Chen
- Department of Gynecology and Obstetrics, Eighth Hospital of Wuhan, Wuhan 430010, Hubei, China
| | - Ying Zhang
- Department of Gynecology and Obstetrics, Eighth Hospital of Wuhan, Wuhan 430010, Hubei, China
| |
Collapse
|
5
|
dos Santos A, Ouellete G, Diorio C, Elowe S, Durocher F. Knockdown of CKAP2 Inhibits Proliferation, Migration, and Aggregate Formation in Aggressive Breast Cancer. Cancers (Basel) 2022; 14:cancers14153759. [PMID: 35954424 PMCID: PMC9367390 DOI: 10.3390/cancers14153759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Cancer is a complex disease where cells grow and divide in an uncontrolled manner. It is well established that its development and progression involve major alterations in the activity of mitotic regulators. In order to improve our understanding of the contribution of cell-cycle progression defects to the development of disease, the aim of this study is to identify genes relevant to the proper progression of mitosis that are deregulated in breast cancer. Our findings identified CKAP2 as an important mitotic regulator in BC tumors. Moreover, in vitro experiments showed that gene silencing of CKAP2 blocked cell growth, cell migration, and formation of cell aggregates. These results demonstrated the important role of CKAP2 in breast cancer tumor formation. Abstract Loss of mitotic regulation is commonly observed in cancer and is a major cause of whole-chromosome aneuploidy. The identification of genes that play a role in the proper progression of mitosis can help us to understand the development and evolution of this disease. Here, we generated a list of proteins implicated in mitosis that we used to probe a patient-derived breast cancer (BC) continuum gene-expression dataset generated by our group by human transcriptome analysis of breast lesions of varying aggressiveness (from normal to invasive). We identified cytoskeleton-associated protein 2 (CKAP2) as an important mitotic regulator in invasive BC. The results showed that CKAP2 is overexpressed in invasive BC tumors when compared with normal tissues, and highly expressed in all BC subtypes. Higher expression of CKAP2 is also related to a worse prognosis in overall survival and relapse-free survival in estrogen receptor (ER)-positive and human epidermal growth factor receptor type 2 (HER2)-negative BC patients. Knockdown of CKAP2 in SKBR3 cells impaired cell proliferation and cell migration and reduced aggregate formation in a 3D culture. Our results show the important role of CKAP2 in BC tumorigenesis, and its potential utility as a prognostic marker in BC.
Collapse
Affiliation(s)
- Alexsandro dos Santos
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada; (A.d.S.); (G.O.)
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada;
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, L’ingénierie et les Applications des Protéines, Québec City, QC G1V 0A6, Canada
| | - Geneviève Ouellete
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada; (A.d.S.); (G.O.)
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada;
| | - Caroline Diorio
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada;
- Département de Médecine Sociale et Préventive, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sabine Elowe
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada;
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, L’ingénierie et les Applications des Protéines, Québec City, QC G1V 0A6, Canada
- Département de Pédiatrie, Faculté de Médecine, Université Laval et le Centre de recherche sur le Cancer de l’Université Laval, Québec City, QC G1R 2J6, Canada
- Correspondence: (S.E.); (F.D.)
| | - Francine Durocher
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada; (A.d.S.); (G.O.)
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada;
- Correspondence: (S.E.); (F.D.)
| |
Collapse
|
6
|
Ma HN, Chen HJ, Liu JQ, Li WT. Long non-coding RNA DLEU1 promotes malignancy of breast cancer by acting as an indispensable coactivator for HIF-1α-induced transcription of CKAP2. Cell Death Dis 2022; 13:625. [PMID: 35853854 PMCID: PMC9296616 DOI: 10.1038/s41419-022-04880-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 11/06/2022]
Abstract
Earlier studies have suggested deleted in lymphocytic leukemia 1 (DLEU1), a long non-coding RNA, is a prognostic biomarker for breast cancer. Here we explored the malignant behaviors and underlying mechanisms regulated by DLEU1 in breast cancer. We demonstrated that up-regulation of DLEU1 was detected in breast cancer tissues and cells, particularly in tumors of higher malignancy. DLEU1 knockdown inhibited the growth and the motility of breast cancer cells. Mechanistically, DLEU1 interacted with HIF-1α to collectively activate the transcription of CKAP2. By activating ERK and STAT3 signaling, CKAP2 essentially mediated the pro-tumor activities of DLEU1. In vivo, depletion of DLEU1 inhibited xenograft growth and metastasis of breast cancer cells. Therefore, DLEU1, by acting as a coactivator for HIF-1α, up-regulates CKAP2 expression and promotes malignancy of breast cancer. Targeting DLEU1, HIF-1α, or CKAP2 may thus benefit breast cancer treatment.
Collapse
Affiliation(s)
- He Nan Ma
- grid.414011.10000 0004 1808 090XDepartment of Breast Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, 450003 Henan Province China
| | - Hai Jun Chen
- grid.414011.10000 0004 1808 090XDepartment of Breast Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, 450003 Henan Province China
| | - Ji Quan Liu
- grid.414011.10000 0004 1808 090XDepartment of Breast Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, 450003 Henan Province China
| | - Wen Tao Li
- grid.414011.10000 0004 1808 090XDepartment of Breast Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, 450003 Henan Province China
| |
Collapse
|
7
|
Homotypic Cancer Cell Membranes Camouflaged Nanoparticles for Targeting Drug Delivery and Enhanced Chemo-Photothermal Therapy of Glioma. Pharmaceuticals (Basel) 2022; 15:ph15020157. [PMID: 35215270 PMCID: PMC8879672 DOI: 10.3390/ph15020157] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Glioma is among the deadliest types of brain cancer, for which there currently is no effective treatment. Chemotherapy is mainstay in the treatment of glioma. However, drug tolerance, non-targeting, and poor blood–brain barrier penetrance severely inhibits the efficacy of chemotherapeutics. An improved treatment method is thus urgently needed. Herein, a multifunctional biomimetic nanoplatform was developed by encapsulating graphene quantum dots (GQDs) and doxorubicin (DOX) inside a homotypic cancer cell membrane (CCM) for targeted chemo-photothermal therapy of glioma. The GQDs with stable fluorescence and a superior light-to-heat conversion property were synthesized as photothermal therapeutic agents and co-encapsulated with DOX in CCM. The as-prepared nanoplatform exhibited a high DOX loading efficiency. The cell membrane coating protected drugs from leakage. Upon an external laser stimuli, the membrane could be destroyed, resulting in rapid DOX release. By taking advantage of the homologous targeting of the cancer cell membrane, the GQDs/DOX@CCM were found to actively target tumor cells, resulting in significantly enhanced cellular uptake. Moreover, a superior suppression efficiency of GQDs/DOX@CCM to cancer cells through chemo-photothermal treatment was also observed. The results suggest that this biomimetic nanoplatform holds potential for efficient targeting of drug delivery and synergistic chemo-photothermal therapy of glioma.
Collapse
|
8
|
Li G, Huang R, Fan W, Wang D, Wu F, Zeng F, Yu M, Zhai Y, Chang Y, Pan C, Jiang T, Yan W, Wang H, Zhang W. Galectin-9/TIM-3 as a Key Regulator of Immune Response in Gliomas With Chromosome 1p/19q Codeletion. Front Immunol 2021; 12:800928. [PMID: 34956239 PMCID: PMC8692744 DOI: 10.3389/fimmu.2021.800928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Gliomas with chromosome 1p/19q codeletion were considered a specific tumor entity. This study was designed to reveal the biological function alterations tightly associated with 1p/19q codeletion in gliomas. Clinicopathological and RNA sequencing data from glioma patients were obtained from The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases. Gene set variation analysis was performed to explore the differences in biological functions between glioma subgroups stratified by 1p/19q codeletion status. The abundance of immune cells in each sample was detected using the CIBERSORT analytical tool. Single-cell sequencing data from public databases were analyzed using the t-distributed stochastic neighbor embedding (t-SNE) algorithm, and the findings were verified by in vitro and in vivo experiments and patient samples.We found that the activation of immune and inflammatory responses was tightly associated with 1p/19q codeletion in gliomas. As the most important transcriptional regulator of Galectin-9 in gliomas, the expression level of CCAAT enhancer-binding protein alpha in samples with 1p/19q codeletion was significantly decreased, which led to the downregulation of the immune checkpoints Galectin-9 and TIM-3. These results were validated in three independent datasets. The t-SNE analysis showed that the loss of chromosome 19q was the main reason for the promotion of the antitumor immune response. IHC protein staining, in vitro and in vivo experiments verified the results of bioinformatics analysis. In gliomas, 1p/19q codeletion can promote the antitumor immune response by downregulating the expression levels of the immune checkpoint TIM-3 and its ligand Galectin-9.
Collapse
Affiliation(s)
- Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruoyu Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenhua Fan
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Di Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Mingchen Yu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - You Zhai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yuanhao Chang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Changqing Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Wei Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongjun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| |
Collapse
|
9
|
Huang K, Yue X, Zheng Y, Zhang Z, Cheng M, Li L, Chen Z, Yang Z, Bian E, Zhao B. Development and Validation of an Mesenchymal-Related Long Non-Coding RNA Prognostic Model in Glioma. Front Oncol 2021; 11:726745. [PMID: 34540695 PMCID: PMC8446619 DOI: 10.3389/fonc.2021.726745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022] Open
Abstract
Glioma is well known as the most aggressive and prevalent primary malignant tumor in the central nervous system. Molecular subtypes and prognosis biomarkers remain a promising research area of gliomas. Notably, the aberrant expression of mesenchymal (MES) subtype related long non-coding RNAs (lncRNAs) is significantly associated with the prognosis of glioma patients. In this study, MES-related genes were obtained from The Cancer Genome Atlas (TCGA) and the Ivy Glioblastoma Atlas Project (Ivy GAP) data sets of glioma, and MES-related lncRNAs were acquired by performing co-expression analysis of these genes. Next, Cox regression analysis was used to establish a prognostic model, that integrated ten MES-related lncRNAs. Glioma patients in TCGA were divided into high-risk and low-risk groups based on the median risk score; compared with the low-risk groups, patients in the high-risk group had shorter survival times. Additionally, we measured the specificity and sensitivity of our model with the ROC curve. Univariate and multivariate Cox analyses showed that the prognostic model was an independent prognostic factor for glioma. To verify the predictive power of these candidate lncRNAs, the corresponding RNA-seq data were downloaded from the Chinese Glioma Genome Atlas (CGGA), and similar results were obtained. Next, we performed the immune cell infiltration profile of patients between two risk groups, and gene set enrichment analysis (GSEA) was performed to detect functional annotation. Finally, the protective factors DGCR10 and HAR1B, and risk factor SNHG18 were selected for functional verification. Knockdown of DGCR10 and HAR1B promoted, whereas knockdown of SNHG18 inhibited the migration and invasion of gliomas. Collectively, we successfully constructed a prognostic model based on a ten MES-related lncRNAs signature, which provides a novel target for predicting the prognosis for glioma patients.
Collapse
Affiliation(s)
- Kebing Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Xiaoyu Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Yinfei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Zhengwei Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Meng Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Lianxin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Zhigang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Zhihao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Feng T, Wei D, Li Q, Yang X, Han Y, Luo Y, Jiang Y. Four Novel Prognostic Genes Related to Prostate Cancer Identified Using Co-expression Structure Network Analysis. Front Genet 2021; 12:584164. [PMID: 33927744 PMCID: PMC8078837 DOI: 10.3389/fgene.2021.584164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies for males, but very little is known about its pathogenesis. This study aimed to identify novel biomarkers associated with PCa prognosis and elucidate the underlying molecular mechanism. First, The Cancer Genome Atlas (TCGA) RNA-sequencing data were utilized to identify differentially expressed genes (DEGs) between tumor and normal samples. The DEGs were then applied to construct a co-expression and mined using structure network analysis. The magenta module that was highly related to the Gleason score (r = 0.46, p = 3e-26) and tumor stage (r = 0.38, p = 2e-17) was screened. Subsequently, all genes of the magenta module underwent function annotation. From the key module, CCNA2, CKAP2L, NCAPG, and NUSAP1 were chosen as the four candidate genes. Finally, internal (TCGA) and external data sets (GSE32571, GSE70770, and GSE141551) were combined to validate and predict the value of real hub genes. The results show that the above genes are up-regulated in PCa samples, and higher expression levels show significant association with higher Gleason scores and tumor T stage. Moreover, receiver operating characteristic curve and survival analysis validate the excellent value of hub genes in PCa progression and prognosis. In addition, the protein levels of these four genes also remain higher in tumor tissues when compared with normal tissues. Gene set enrichment analysis and gene set variation analysis for a single gene reveal the close relation with cell proliferation. Meanwhile, 11 small molecular drugs that have the potential to treat PCa were also screened. In conclusion, our research identified four potential prognostic genes and several candidate molecular drugs for treating PCa.
Collapse
Affiliation(s)
- Tao Feng
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Dechao Wei
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qiankun Li
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaobing Yang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yili Han
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yong Luo
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongguang Jiang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Zheng L, Yu M, Zhang S. Prognostic value of pretreatment circulating basophils in patients with glioblastoma. Neurosurg Rev 2021; 44:3471-3478. [PMID: 33765226 DOI: 10.1007/s10143-021-01524-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/07/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Accumulating evidence demonstrated that atopic diseases were inversely related to glioma susceptibility and associated with improved prognosis of patients with glioma. This study aimed to elucidate the impacts of basophils, one of the important effector cells in the pathobiology of atopic disease, on prognosis of patients with glioblastoma (GBM). A total of 268 patients were newly diagnosed with GBM and treated with operation at our institution from January 2010 to December 2017. The association between pre-operation circulating eosinophil, basophil, neutrophil, lymphocyte, monocyte count and GBM progression free survival (PFS) was investigated. Moreover, based on the results of multivariate analysis, a prognostic nomogram was established and evaluated. Kaplan-Meier method showed that basophils ≥0.015 × 109/L (p = 0.015) and lymphocytes ≥1.555 × 109/L (p = 0.005) were correlated with better PFS. Cox regression model showed that basophils ≥0.015 × 109/L were an independent prognostic factor for PFS. Prognostic nomogram was established and the concordance index (C-index) for PFS prediction was 0.629. The calibration plots for the probability of 0.5-, 1- and 3-year PFS showed optimal consistency between the prediction by nomogram and actual observation. Increased pre-operation circulating basophils portend better PFS, which might be a useful and novel marker for the prognosis of GBM patients.
Collapse
Affiliation(s)
- Lingnan Zheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Gaopeng Street, Keyuan Road 4, Chengdu, 610041, Sichuan, China
| | - Min Yu
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Gaopeng Street, Keyuan Road 4, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
12
|
Ebrahimpour A, Sarfi M, Rezatabar S, Tehrani SS. Novel insights into the interaction between long non-coding RNAs and microRNAs in glioma. Mol Cell Biochem 2021; 476:2317-2335. [PMID: 33582947 DOI: 10.1007/s11010-021-04080-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Glioma is the most common brain tumor of the central nervous system. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been identified to play a vital role in the initiation and progression of glioma, including tumor cell proliferation, survival, apoptosis, invasion, and therapy resistance. New documents emerged, which indicated that the interaction between long non-coding RNAs and miRNAs contributes to the tumorigenesis and pathogenesis of glioma. LncRNAs can act as competing for endogenous RNA (ceRNA), and molecular sponge/deregulator in regulating miRNAs. These interactions stimulate different molecular signaling pathways in glioma, including the lncRNAs/miRNAs/Wnt/β-catenin molecular signaling pathway, the lncRNAs/miRNAs/PI3K/AKT/mTOR molecular signaling pathway, the lncRNAs-miRNAs/MAPK kinase molecular signaling pathway, and the lncRNAs/miRNAs/NF-κB molecular signaling pathway. In this paper, the basic roles and molecular interactions of the lncRNAs and miRNAs pathway glioma were summarized to better understand the pathogenesis and tumorigenesis of glioma.
Collapse
Affiliation(s)
- Anahita Ebrahimpour
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Sarfi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Rezatabar
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Li YF, Tsai WC, Chou CH, Huang LC, Huang SM, Hueng DY, Tsai CK. CKAP2L Knockdown Exerts Antitumor Effects by Increasing miR-4496 in Glioblastoma Cell Lines. Int J Mol Sci 2020; 22:ijms22010197. [PMID: 33375517 PMCID: PMC7796349 DOI: 10.3390/ijms22010197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Despite advances in the diagnosis and treatment of the central nervous system malignancy glioma, overall survival remains poor. Cytoskeleton-associated protein 2-like (CKAP2L), which plays key roles in neural progenitor cell division, has also been linked to poor prognosis in lung cancer. In the present study, we investigated the role of CKAP2L in glioma. From bioinformatics analyses of datasets from The Cancer Gene Atlas and the Chinese Glioma Genome Atlas, we found that CKAP2L expression correlates with tumor grade and overall survival. Gene set enrichment analysis (GSEA) showed that MITOTIC_SPINDLE, G2M_CHECKPOINT, and E2F_TARGETS are crucially enriched phenotypes associated with high CKAP2L expression. Using U87MG, U118MG, and LNZ308 human glioma cells, we confirmed that CKAP2L knockdown with siCKAP2L inhibits glioma cell proliferation, migration, invasion, and epithelial-mesenchymal transition. Interestingly, CKAP2L knockdown also induced cell cycle arrest at G2/M phase, which is consistent with the GSEA finding. Finally, we observed that CKAP2L knockdown led to significant increases in miR-4496. Treating cells with exogenous miR-4496 mimicked the effect of CKAP2L knockdown, and the effects of CKAP2L knockdown could be suppressed by miR-4496 inhibition. These findings suggest that CKAP2L is a vital regulator of miR-4496 activity and that CKAP2L is a potentially useful prognostic marker in glioma.
Collapse
Affiliation(s)
- Yao-Feng Li
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (W.-C.T.)
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (W.-C.T.)
| | - Chung-Hsing Chou
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan; (S.-M.H.); (D.-Y.H.)
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Shih-Ming Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan; (S.-M.H.); (D.-Y.H.)
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Dueng-Yuan Hueng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan; (S.-M.H.); (D.-Y.H.)
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
- Correspondence:
| |
Collapse
|
14
|
Chen BS, Wang KY, Yu SQ, Zhang CB, Li GZ, Wang ZL, Bao ZS. Whole-transcriptome sequencing profiling identifies functional and prognostic signatures in patients with PTPRZ1-MET fusion-negative secondary glioblastoma multiforme. Oncol Lett 2020; 20:187. [PMID: 32952656 PMCID: PMC7479526 DOI: 10.3892/ol.2020.12049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/21/2020] [Indexed: 11/24/2022] Open
Abstract
Gliomas are the most common type of primary brain tumor in adults with a high mortality rate. Low-grade gliomas progress to glioblastoma multiforme (GBM) in the majority of cases, forming secondary GBM (sGBM), followed by rapid fatal clinical outcomes. Protein tyrosine phosphatase receptor type Z1 (PTPRZ1)-MET proto-oncogene receptor tyrosine kinase (MET) (ZM) fusion has been identified as a biomarker for sGBM that is involved in glioma progression, but the mechanism of gliomagenesis and pathology of ZM-negative sGBM has remained to be fully elucidated. A whole-transcriptome signature is thus required to improve the outcome prediction for patients with sGBM without ZM fusion. In the present study, whole-transcriptome sequencing on 42 sGBM samples with or without ZM fusion from the Chinese Glioma Genome Atlas database identified mRNAs with differential expression between patients with and without ZM fusion and the most significant survival-associated genes were identified. A 6-gene signature was identified as a novel prognostic model reflecting survival probability in patients with ZM-negative sGBM. Clinical characteristics in patients with a high or low risk score value were analyzed with the Kaplan-Meier method and a two-sided log-rank test. In addition, ZM-negative sGBM patients with a high risk score exhibited an increase in immune cells, NF-κB-induced pathway activation and a decrease in endothelial cells compared with those with a low risk score. The present study demonstrated the potential use of a next-generation sequencing-based cancer gene signature in patients with ZM-negative sGBM, indicating possible clinical therapeutic strategies for further treatment of such patients.
Collapse
Affiliation(s)
- Bao-Shi Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Kuan-Yu Wang
- Department of Gamma Knife Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing 100069, P.R. China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Shu-Qing Yu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Chuan-Bao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Guan-Zhang Li
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Zhi-Liang Wang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Zhao-Shi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing 100069, P.R. China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
15
|
Hu WM, Yang YZ, Zhang TZ, Qin CF, Li XN. LGALS3 Is a Poor Prognostic Factor in Diffusely Infiltrating Gliomas and Is Closely Correlated With CD163+ Tumor-Associated Macrophages. Front Med (Lausanne) 2020; 7:182. [PMID: 32528967 PMCID: PMC7254797 DOI: 10.3389/fmed.2020.00182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Glioma, the most common brain tumor, is a heterogeneous group of glia-derived tumors, the majority of which have characteristics of diffuse infiltration and immunosuppression. The LGALS protein family is a large class of sugar-binding proteins. Among them, LGALS3 has been reported to promote tumor development and progression in some cancers. However, the clinical significance and biological functions of LGALS3 in glioma remain virtually unknown. The purpose of our research is to detect LGALS3 expression and its prognostic value in glioma and reveal the relationship between its expression and the clinico/molecular-pathological features of patients and immune cell infiltration. Methods: LGALS3 protein expression was examined by immunohistochemistry. The mRNA expression data of LGALS3 was downloaded and analyzed from TCGA and Rembrandt datasets. The association between LGALS3 and glioma clinically relevant diagnostic/molecular markers (IDH, 1p19q, ATRX, MGMT, and TERT) was examined using the Chi-Squared (χ2) test. The correlation between LGALS3 expression and the infiltration of multiple intra-tumoral immune cell types, including B cells (CD20), T cells (CD4 and CD8), macrophages (CD68), and M2 tumor-associated macrophages (CD163), was evaluated by Spearman correlation analysis. Kaplan-Meier analysis and the Cox regression analysis were applied to evaluate the prognostic value of LGALS3 in glioma. The log-rank test was used to evaluate Kaplan-Meier results for significance. Results: Out of all 304 glioma cases, LGALS3 protein was expressed in 125 glioma cases (41.1%, 125/304), with 69.2% (9/13) in WHO I, 9.8% (8/82) in WHO II, 34.2% (26/76) in WHO III, and 61.7% (82/133) in WHO IV. The expression of LGALS3 was correlated with patient age, WHO grade, PHH3 (mitosis), Ki67 index, IDH, 1p/19q codeletion, and TERT promoter status. LGALS3 was an independent poor prognostic marker in diffusely infiltrating gliomas and was positively correlated with immune cell infiltration, particularly CD163+ tumor-associated macrophages in the TCGA dataset, Rembrandt dataset, and our SYSUCC cohort (R = 0.419, 0.627, and 0.724). Conclusion: LGALS3 was highly expressed in pilocytic astrocytoma, GBM, and IDH wild-type LGG. It served as a poor prognostic marker in diffusely infiltrating gliomas. Based on its prognostic significance and strong correlation with CD163+ TAMs, it may act as an important therapeutic target for human glioma.
Collapse
Affiliation(s)
- Wan-Ming Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center and State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuan-Zhong Yang
- Department of Pathology, Sun Yat-sen University Cancer Center and State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tian-Zhi Zhang
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chang-Fei Qin
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xue-Nong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Xu N, Chen SH, Lin TT, Cai H, Ke ZB, Dong RN, Huang P, Li XD, Chen YH, Zheng QS. Development and validation of hub genes for lymph node metastasis in patients with prostate cancer. J Cell Mol Med 2020; 24:4402-4414. [PMID: 32130760 PMCID: PMC7176841 DOI: 10.1111/jcmm.15098] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/09/2020] [Accepted: 02/15/2020] [Indexed: 12/24/2022] Open
Abstract
Lymph node metastasis is one of the most important independent risk factors that can negatively affect the prognosis of prostate cancer (PCa); however, the exact mechanisms have not been well studied. This study aims to better understand the underlying mechanism of lymph node metastasis in PCa by bioinformatics analysis. We analysed a total of 367 PCa cases from the cancer genome atlas database and performed weighted gene co-expression network analysis to explore some modules related to lymph node metastasis. Gene Ontology analysis and pathway enrichment analysis were conducted for functional annotation, and a protein-protein interaction network was built. Samples from the International Cancer Genomics Consortium database were used as a validation set. The turquoise module showed the most relevance with lymph node metastasis. Functional annotation showed that biological processes and pathways were mainly related to activation of the processes of cell cycle and mitosis. Four hub genes were selected: CKAP2L, CDCA8, ERCC6L and ARPC1A. Further validation showed that the four hub genes well-distinguished tumour and normal tissues, and they were good biomarkers for lymph node metastasis of PCa. In conclusion, the identified hub genes facilitate our knowledge of the underlying molecular mechanism for lymph node metastasis of PCa.
Collapse
Affiliation(s)
- Ning Xu
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shao-Hao Chen
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ting-Ting Lin
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hai Cai
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhi-Bin Ke
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ru-Nan Dong
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Peng Huang
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiao-Dong Li
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ye-Hui Chen
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qing-Shui Zheng
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
17
|
Cui X, Jing X, Yi Q, Xiang Z, Tian J, Tan B, Zhu J. IL22 furthers malignant transformation of rat mesenchymal stem cells, possibly in association with IL22RA1/STAT3 signaling. Oncol Rep 2019; 41:2148-2158. [PMID: 30816520 PMCID: PMC6412447 DOI: 10.3892/or.2019.7007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) hold great promise as potential therapies for tumors through the delivery of various anticancer agents. However, exogenous tissue‑derived MSCs, such as those of bone marrow, have exhibited a tendency for malignant transformation in the tumor microenvironment. This issue remains controversial and is poorly understood. In the present study, the role of interleukin 22 (IL22)/IL22 receptor subunit α 1 (IL22RA1) and signal transducer and activator of transcription 3 (STAT3) signaling in the malignant transformation of MSCs was investigated. Following isolation of rat MSCs and their indirect co‑culture with C6 glioma cells, the transformed MSCs exhibited tumor cell characteristics. The Cancer Genome Atlas‑Glioblastoma Multiforme analysis revealed that primary and recurrent glioblastomas have increased IL22RA1 expression, compared with normal tissues, whereas the expression of IL22 was low in glioblastoma and normal tissues. mRNA and protein expression levels of IL22RA1 were significantly increased in the MSCs co‑cultured with C6 glioma cells. Furthermore, MSCs incubated with IL22 exhibited increased proliferation, migration and invasion. STAT3 demonstrated activation and nuclear translocation in the presence of IL22. Additionally, STAT3 small interfering RNA significantly inhibited the migration and invasion ability of MSCs, and the expression of the STAT3 downstream targets cyclin D1 and B‑cell lymphoma‑extra large under IL22 stimulation, indicating that IL22 also promoted MSC migration and invasion through STAT3 signaling. These data indicated that IL22 serves a critical role in the malignant transformation of rat MSCs, which is associated with an enhancement of the IL22RA1/STAT3 signaling pathway in the tumor microenvironment.
Collapse
Affiliation(s)
- Xiangrong Cui
- Ministry of Education Key Laboratory of Child Development and Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Province People's Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Qin Yi
- Ministry of Education Key Laboratory of Child Development and Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Zhongping Xiang
- Ministry of Education Key Laboratory of Child Development and Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jie Tian
- Cardiovascular Department (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Bin Tan
- Ministry of Education Key Laboratory of Child Development and Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jing Zhu
- Ministry of Education Key Laboratory of Child Development and Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
18
|
Xiong G, Li L, Chen X, Song S, Zhao Y, Cai W, Peng J. Up-regulation of CKAP2L expression promotes lung adenocarcinoma invasion and is associated with poor prognosis. Onco Targets Ther 2019; 12:1171-1180. [PMID: 30863084 PMCID: PMC6388994 DOI: 10.2147/ott.s182242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim The purpose of this study is to consider the function of cytoskeleton-associated protein 2-like (CKAP2L) in lung adenocarcinoma (LAD) development and its prognostic value. Methods The mRNA expression of CKAP2L and its correlation with clinical factors in LAD patients were analyzed from the data taken from The Cancer Genome Atlas and The First Affiliated Hospital of Kunming Medical University. We constructed H460 and A549 cell lines with silenced CKAP2L using RNA interference. Cell counting kit-8 assay and colony formation assays were carried out to determine the function of CKAP2L in H460 and A549 cell proliferation. Transwell and wound healing assays were applied to determine the effect of CKAP2L on H460 and A549 cell invasion and migration. The influences of CKAP2L on mitogen-activated protein kinase signaling pathway-related proteins were tested by Western blotting. Results CKAP2L expression is enhanced in LAD tissues and is predictive of poor prognosis in LAD patients. High expression of CKAP2L is associated with stage (P<0.001), lymph node status (P=0.002), and metastasis (P=0.025). Depletion of CKAP2L dramatically suppressed the proliferation, migration, and invasion of H460 and A549 cells. Moreover, the ratio of p-MEK/ MEK and p-ERK/ERK reduced obviously in A549 cells after depleting CKAP2L. Conclusion Our findings implied that CKAP2L might be a promoter of LAD and could serve as a predictor for LAD patients.
Collapse
Affiliation(s)
- Guosheng Xiong
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China,
| | - Liyin Li
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China
| | - Xiaobo Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China,
| | - Sinuo Song
- Department of Medical Management, Kunming General Hospital, Kunming, Yunnan 650032, People's Republic of China
| | - Yunping Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China,
| | - Wenke Cai
- Department of Cardiovascular and Thoracic, Kunming General Hospital, Kunming, Yunnan 650032, People's Republic of China
| | - Jingping Peng
- Department of Cardiovascular and Thoracic, Kunming General Hospital, Kunming, Yunnan 650032, People's Republic of China
| |
Collapse
|