1
|
Loudig O, Mitchell MI, Ben-Dov IZ, Liu C, Fineberg S. MiRNA expression deregulation correlates with the Oncotype DX ® DCIS score. BREAST CANCER RESEARCH : BCR 2022; 24:62. [PMID: 36096802 PMCID: PMC9469592 DOI: 10.1186/s13058-022-01558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
Background Current clinical criteria do not discriminate well between women who will or those who will not develop ipsilateral invasive breast cancer (IBC), or a DCIS recurrence after a ductal carcinoma in situ (DCIS) diagnosis. The 12-gene Oncotype DX® DCIS assay (RT qPCR gene-based scoring system) was established and shown to predict the risk of subsequent ipsilateral IBC or DCIS recurrence. Recent studies have shown that microRNA (miRNA) expression deregulation can contribute to the development of IBC, but very few have evaluated miRNA deregulation in DCIS lesions. In this study, we sought to determine whether specific miRNA expression changes may correlate with Oncotype DX® DCIS scores. Methods For this study, we used archived formalin-fixed, paraffin-embedded (FFPE) specimens from 41 women diagnosed with DCIS between 2012 and 2018. The DCIS lesions were stratified into low (n = 26), intermediate (n = 10), and high (n = 5) risk score groups using the Oncotype DX® DCIS assay. Total RNA was extracted from DCIS lesions by macro-dissection of unstained FFPE sections, and next-generation small-RNA sequencing was performed. We evaluated the correlation between miRNA expression data and Oncotype score, as well as patient age. RT-qPCR validations were performed to validate the topmost differentially expressed miRNAs identified between the different risk score groups. Results MiRNA sequencing of 32 FFPE DCIS specimens from the three different risk group scores identified a correlation between expression deregulation of 17 miRNAs and Oncotype scores. Our analyses also revealed a correlation between the expression deregulation of 9 miRNAs and the patient’s age. Based on these results, a total of 15 miRNAs were selected for RT-qPCR validation. Of these, miR-190b (p = 0.043), miR-135a (p = 0.05), miR-205 (p = 0.00056), miR-30c (p = 0.011), and miR-744 (p = 0.038) showed a decreased expression in the intermediate/high Oncotype group when compared to the low-risk score group. A composite risk score was established using these 5 miRNAs and indicated a significant association between miRNA expression deregulation and the Oncotype DX® DCIS Score (p < 0.0021), between high/intermediate and low risk groups. Conclusions Our analyses identified a subset of 5 miRNAs able to discriminate between Oncotype DX® DCIS score subgroups. Together, our data suggest that miRNA expression analysis may add value to the predictive and prognostic evaluation of DCIS lesions. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01558-4.
Collapse
Affiliation(s)
- Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA.
| | - Megan I Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Iddo Z Ben-Dov
- Department of Nephrology and Hypertension, Hadassah Medical Center, 91120, Jerusalem, Israel
| | - Christina Liu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Susan Fineberg
- Department of Pathology, Montefiore Medical Center and the Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
2
|
Xie Y, Wang Y, Xue W, Zou H, Li K, Liu K, Zhao W, Zhu C, Cao J. Profiling and Integrated Analysis of Differentially Expressed MicroRNAs as Novel Biomarkers of Hepatocellular Carcinoma. Front Oncol 2022; 11:770918. [PMID: 35174066 PMCID: PMC8841844 DOI: 10.3389/fonc.2021.770918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/29/2021] [Indexed: 12/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous disease that has multiple etiologies. It is the most common primary liver cancer, the sixth highest cause of cancer incidences, and the fourth highest cause of cancer-related deaths. The discovery of new biomarkers for the early detection, treatment, and prognosis of HCC would therefore be extremely useful. This study investigated differentially expressed ribonucleic acid (RNA) profiles by constructing a genome-wide profile of clinical samples. Differential expression analysis identified 1,280 differentially expressed messenger RNAs (dif-mRNAs), 99 differentially expressed microRNAs (dif-miRNAs), 181 differentially expressed long non-coding RNAs (dif-lncRNAs), and 31 differentially expressed circular RNAs (dif-circRNAs). Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) path analysis were then conducted on these differentially expressed RNAs, revealing that they were clearly related to cell division, foreign body metabolism, and ribosome assembly. A competing endogenous RNA (ceRNA) network was then constructed based on the regulatory dif-miRNA-dif-mRNA and dif-miRNA-dif-lncRNA relationships. These results were also verified using HCC data from the Cancer Genome Atlas (TCGA); seven dif-miRNAs were verified in clinical samples by real-time quantitative polymerase chain reaction (RT-qPCR). Kaplan-Meier survival analysis revealed that the expression levels of Hsa-miR-1269a, Hsa-miR-421, and Hsa-miR-190b were correlated with overall survival. (P <0.05). Survival analysis of clinical samples showed that hsa-mir-1269a, hsa-mir-421 were associated with prognosis (p<0.05).This study revealed the general expression characteristics of specific differentially expressed miRNAs using a ceRNA network constructed from HCC samples. Hsa-mir-1269a, hsa-mir-421 may be promising candidates.
Collapse
Affiliation(s)
- Yuwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yixiu Wang
- Department of Hepatic Surgery, Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weijie Xue
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Zou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kun Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kui Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Chengzhan Zhu, ; Jingyu Cao,
| | - Jingyu Cao
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Chengzhan Zhu, ; Jingyu Cao,
| |
Collapse
|
3
|
Wang L, Gao Z, Liu C, Li J. Potential biomarkers of abnormal osseointegration of implants in type II diabetes mellitus. BMC Oral Health 2021; 21:583. [PMID: 34794414 PMCID: PMC8603511 DOI: 10.1186/s12903-021-01939-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/30/2021] [Indexed: 01/13/2023] Open
Abstract
Background Type II diabetes mellitus (T2DM) is an important risk factor for osseointegration of implants. The aim of this study was to explore key genes of T2DM affecting bone metabolism through bioinformatic analysis of published RNA sequencing data, identify potential biomarkers, and provide a reference for finding the molecular mechanism of abnormal osseointegration caused by T2DM. Methods We identified differentially expressed mRNAs and miRNAs from the Gene Expression Omnibus database using the R package ‘limma’ and analysed the predicted target genes using Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and Gene Ontology analysis. At the same time, miRNA–mRNA interactions were explored using miRWalk 2.0. Results We constructed an miRNA-gene regulatory network and a protein–protein interaction network. The enrichment pathways of differentially expressed mRNAs included extracellular matrix receptor interactions, protein digestion and absorption, the PI3K-Akt signalling pathway, cytokine–cytokine receptor interactions, chemokine signalling pathways, and haematopoietic cell lineage functions. We analysed the expression of these differentially expressed mRNAs and miRNAs in T2DM rats and normal rats with bone implants and identified Smpd3, Itga10, and rno-mir-207 as possible key players in osseointegration in T2DM. Conclusion Smpd3, Itga10, and rno-mir-207 are possible biomarkers of osseointegration in T2DM. This study sheds light on the possible molecular mechanism of abnormal osseointegration caused by bone metabolism disorder in T2DM. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01939-9.
Collapse
Affiliation(s)
- Lingxiao Wang
- Department of Dental Implant Center, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, No. 4 Tian Tan Xi Li, Beijing, 100050, People's Republic of China
| | - Zhenhua Gao
- Outpatient Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, No. 4 Tian Tan Xi Li, Beijing, 100050, People's Republic of China
| | - Changying Liu
- Department of Dental Implant Center, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, No. 4 Tian Tan Xi Li, Beijing, 100050, People's Republic of China
| | - Jun Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, No. 4 Tian Tan Xi Li, Beijing, 100050, People's Republic of China.
| |
Collapse
|
4
|
Chu KJ, Ma YS, Jiang XH, Wu TM, Wu ZJ, Li ZZ, Wang JH, Gao QX, Yi B, Shi Y, Wang HM, Gu LP, Zhang SQ, Wang GR, Liu JB, Fu D, Jiang XQ. Whole-Transcriptome Sequencing Identifies Key Differentially Expressed mRNAs, miRNAs, lncRNAs, and circRNAs Associated with CHOL. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:592-603. [PMID: 32721879 PMCID: PMC7390861 DOI: 10.1016/j.omtn.2020.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
To systematically evaluate the whole-transcriptome sequencing data of cholangiocarcinoma (CHOL) to gain more insights into the transcriptomic landscape and molecular mechanism of this cancer, we performed whole-transcriptome sequencing based on the tumorous (C) and their corresponding non-tumorous adjacent to the tumors (CP) from eight CHOL patients. Subsequently, differential expression analysis was performed on the C and CP groups, followed by functional interaction prediction analysis to investigate gene-regulatory circuits in CHOL. In addition, The Cancer Genome Atlas (TCGA) for CHOL data was used to validate the results. In total, 2,895 differentially expressed messenger RNAs (dif-mRNAs), 56 differentially expressed microRNAs (dif-miRNAs), 151 differentially expressed long non-coding RNAs (dif-lncRNAs), and 110 differentially expressed circular RNAs (dif-circRNAs) were found in CHOL samples compared with controls. Enrichment analysis on those differentially expressed genes (DEGs) related to miRNA, lncRNA, and circRNA also identified the function of spliceosome. The downregulated hsa-miR-144-3p were significantly enriched in the competing endogenous RNA (ceRNA) complex network, which also included 7 upregulated and 13 downregulated circRNAs, 7 upregulated lncRNAs, and 90 upregulated and 40 downregulated mRNAs. Moreover, most of the DEGs and a few of the miRNAs (such as hsa-miR-144-3p) were successfully validated by TCGA data. The genes involved in RNA splicing and protein degradation processes and miR-144-3p may play fundamental roles in the pathogenesis of CHOL.
Collapse
Affiliation(s)
- Kai-Jian Chu
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China
| | - Yu-Shui Ma
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiao-Hui Jiang
- General Surgery, Nantong Tumor Hospital, Nantong 226631, China
| | - Ting-Miao Wu
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China
| | - Zhi-Jun Wu
- Department of Oncology, Nantong Second People's Hospital, Nantong 226002, China
| | - Zhi-Zhen Li
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China
| | - Jing-Han Wang
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China
| | - Qing-Xiang Gao
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China
| | - Bin Yi
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China
| | - Yi Shi
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China
| | - Hui-Min Wang
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China
| | - Li-Peng Gu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Su-Qing Zhang
- Department of Hepatobiliary Surgery, Nantong Tumor Hospital, Nantong 226631, China
| | - Gao-Ren Wang
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China.
| | - Da Fu
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Xiao-Qing Jiang
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China.
| |
Collapse
|
5
|
Dual Regulatory Mechanisms of Expression and Mutation Involving Metabolism-Related Genes FDFT1 and UQCR5 during CLM. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:172-178. [PMID: 31236441 PMCID: PMC6579909 DOI: 10.1016/j.omto.2019.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, and liver metastasis presents a major cause of CRC-associated death. Extensive genomic analysis has provided valuable insight into the pathogenesis and progression of CRC; however, a comprehensive proteogenomic characterization of CRC liver metastasis (CLM) has yet to be reported. Here, we analyzed the proteomes of 44 paired normal colorectal tissues and CRC tissues with or without liver metastasis, as well as analyzed genomics of CRC characterized previously by The Cancer Genome Atlas (TCGA) to conduct integrated proteogenomic analyses. We identified a total of 2,170 significantly deregulated proteins associated with CLM, 14.88% of which were involved in metabolic pathways. The mutated peptide number was found to have potential prognosis value, and somatic variants revealed two metabolism-related genes UQCR5 and FDFT1 that frequently mutated only in the liver metastatic cohort and displayed dysregulated protein abundance with biological function and clinical significance in CLM. Proteogenomic characterization and integrative and comparative genomic analysis provides functional context and prognostic value to annotate genomic abnormalities and affords a new paradigm for understanding human colon and rectal cancer liver metastasis.
Collapse
|