1
|
Mecham A, Stephenson A, Quinteros BI, Brown GS, Piccolo SR. TidyGEO: preparing analysis-ready datasets from Gene Expression Omnibus. J Integr Bioinform 2024; 21:jib-2023-0021. [PMID: 38047898 PMCID: PMC11294518 DOI: 10.1515/jib-2023-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023] Open
Abstract
TidyGEO is a Web-based tool for downloading, tidying, and reformatting data series from Gene Expression Omnibus (GEO). As a freely accessible repository with data from over 6 million biological samples across more than 4000 organisms, GEO provides diverse opportunities for secondary research. Although scientists may find assay data relevant to a given research question, most analyses require sample-level annotations. In GEO, such annotations are stored alongside assay data in delimited, text-based files. However, the structure and semantics of the annotations vary widely from one series to another, and many annotations are not useful for analysis purposes. Thus, every GEO series must be tidied before it is analyzed. Manual approaches may be used, but these are error prone and take time away from other research tasks. Custom computer scripts can be written, but many scientists lack the computational expertise to create such scripts. To address these challenges, we created TidyGEO, which supports essential data-cleaning tasks for sample-level annotations, such as selecting informative columns, renaming columns, splitting or merging columns, standardizing data values, and filtering samples. Additionally, users can integrate annotations with assay data, restructure assay data, and generate code that enables others to reproduce these steps.
Collapse
Affiliation(s)
- Avery Mecham
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Ashlie Stephenson
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Badi I. Quinteros
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Grace S. Brown
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| | | |
Collapse
|
2
|
Wu F, Yang J, Shang G, Zhang Z, Niu S, Liu Y, Liu H, Jing J, Fang Y. Exosomal miR-224-5p from Colorectal Cancer Cells Promotes Malignant Transformation of Human Normal Colon Epithelial Cells by Promoting Cell Proliferation through Downregulation of CMTM4. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5983629. [PMID: 35814269 PMCID: PMC9262543 DOI: 10.1155/2022/5983629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/23/2022] [Indexed: 11/18/2022]
Abstract
Background Interactions between malignant cells and neighboring normal cells are important for carcinogenesis. In addition, cancer cell-derived exosomes have been shown to promote the malignant transformation of recipient cells, but the mechanisms remain unclear. Methods The level of miR-224-5p in CRC cell-derived exosomes was determined by RT-qPCR assay. In addition, PKH26 dye-labeled exosomes were used to assess the efficacy of the transfer of exosomes between SW620 and normal colon epithelial cell line CCD 841 CoN. Results In this study, we found that overexpression of miR-224-5p significantly promoted the proliferation, migration, and invasion and inhibited the oxidative stress of SW620 cells. In addition, miR-224-5p can be transferred from SW620 cells to CCD 841 CoN cells via exosomes. SW620 cell-derived exosomal miR-224-5p markedly promoted proliferation, migration, and invasion of CCD 841 CoN cells. Meanwhile, SW620 cell-derived exosomal miR-224-5p notably decreased the expression of CMTM4 in CCD 841 CoN cells. Furthermore, SW620 cell-derived exosomal miR-224-5p significantly promoted tumor growth in a xenograft model in vivo. Conclusion These findings suggested that SW620 cell-derived exosomal miR-224-5p could promote malignant transformation and tumorigenesis in vitro and in vivo via downregulation of CMTM4, suggesting that miR-224-5p might be a potential target for therapies in CRC.
Collapse
Affiliation(s)
- Feng Wu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Jiani Yang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Guoyin Shang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Zhijia Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Sijia Niu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yang Liu
- Pharmacy Intravenous Admixture Services, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Hongru Liu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Jing Jing
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Yu Fang
- Department of Phase I Clinical Trial Ward, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
3
|
Li A, Wu N, Sun J. E2F1-induced microRNA-224-5p expression is associated with hepatocellular carcinoma cell migration, invasion and epithelial-mesenchymal transition via MREG. Oncol Lett 2022; 23:82. [PMID: 35126724 PMCID: PMC8805181 DOI: 10.3892/ol.2022.13202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/08/2021] [Indexed: 11/05/2022] Open
Abstract
MicroRNA (miR)-224-5p has been reported to be associated with multiple types of cancer. However, its biological role and underlying mechanism in hepatocellular carcinoma (HCC) has yet to be fully elucidated. The aim of the present study was to investigate whether miR-224-5p mRNA expression level was increased in hepatocellular carcinoma and whether it was associated with poor prognosis. Decreased mRNA expression level of miR-224-5p was shown to suppress liver cancer cell migration, invasion and epithelial-mesenchymal transition (EMT). Mechanistically, E2F1 was found to regulate miR-224-5p expression by binding to its promoter region. Melanoregulin (MREG) was identified as the direct target of miR-224-5p by searching the TargetScan, miRDB and StarBase databases. Overexpression of MREG could attenuate liver cancer cell migration, invasion and EMT. Rescue experiments further confirmed that MREG was associated with the regulation of miR-224-5p in liver cancer. In addition, the E2F1/miR-224-5p axis was shown to promote liver cancer cell migration, invasion and EMT by regulating MREG expression. These results suggested that E2F1-induced upregulation of miR-224-5p may serve an important role in MREG-induced liver cancer cell migration, invasion and EMT, and highlights the regulatory function of miR-224-5p in liver cancer. Therefore, the E2F1/miR-224-5p/MREG axis may provide a theoretical basis for the clinical treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- An Li
- Department of Radiotherapy, Shanxi Yuncheng Central Hospital, Yuncheng, Shanxi 044000, P.R. China
| | - Ning Wu
- Department of Oncology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Jingyu Sun
- Department of Cardiology, Shanxi Yuncheng Central Hospital, Yuncheng, Shanxi 044000, P.R. China
| |
Collapse
|
4
|
Zhang Y, Wang X, Cheng XK, Zong YY, He RQ, Chen G, Qin YJ. Clinical significance and effect of lncRNA BBOX1-AS1 on the proliferation and migration of lung squamous cell carcinoma. Oncol Lett 2021; 23:17. [PMID: 34820016 PMCID: PMC8607367 DOI: 10.3892/ol.2021.13135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have a role in the occurrence and development of lung squamous cell carcinoma (LUSC). lncRNA γ-butyrobetaine hydroxylase 1 (BBOX1)-antisense 1 (AS1) may contribute to disease development. However, there are no studies on the role of BBOX1-AS1 in LUSC to date. In the present study, an in-house gene microarray analysis was performed to detect the differentially expressed lncRNAs and mRNAs between three pairs of LUSC and normal lung tissues. Only one lncRNA, BBOX1-AS1, was differentially expressed in the in-house microarray and The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and ArrayExpress databases. Reverse transcription-quantitative PCR (RT-qPCR) was then performed and the original RNA-sequencing data from the TCGA, GEO and ArrayExpress datasets were used to determine the expression and clinical value of BBOX1-AS1 in LUSC. In addition, a Cell Counting Kit-8 assay, cell cycle analysis and scratch assay were performed to explore whether BBOX1-AS1 expression affected the proliferation and migration of LUSC cells in vitro. The results of the RT-qPCR analysis and data obtained from the TCGA database, GEO datasets, in-house gene microarray and standard mean deviation analysis all supported the upregulated expression level of BBOX1-AS1 in LUSC. Furthermore, silencing of BBOX1-AS1 inhibited the proliferation and migration of LUSC cells according to in vitro assays. In addition, the cells were arrested in S-phase after knockdown of BBOX1-AS1. In conclusion, the expression level of BBOX1-AS1 was upregulated in LUSC tissues. BBOX1-AS1 may exert an oncogenic effect on LUSC by regulating various biological functions. However, additional functional experiments should be performed to verify the exact mechanism.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Xiao Wang
- Department of Orthopedics, Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan, Shandong 250000, P.R. China
| | - Xian-Kui Cheng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Yuan-Yuan Zong
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Rong-Quan He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ye-Jun Qin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
5
|
Association Between ATP Citrate Lyase (ACLY) Gene Polymorphism and Fattening, Slaughter and Pork Quality Traits in Polish Pigs. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The primary aim of this study was to estimate the relationship between ATP citrate lyase (ACLY) gene polymorphism (c.*523 T>C) and fattening and pork quality traits. Investigations were carried out on 526 pigs represented by three breeds: Polish Landrace (n=269), Polish Large White (n=189) and Puławska (n=68). ACLY genotypes were determined by PCR–RFLP method. It was demonstrated that the analyzed polymorphism had significant influence (P<0.05 and P≤0.01) on several economically important traits in pigs, e.g. average daily gain, average backfat thickness, lean meat percentage. The results obtained allow for application of c.*523 T>C polymorphism in breeding programs to improve the pig population in terms of fattening and slaughter traits. However, this breeding program may have a slight negative effect on meat texture parameters.
Collapse
|
6
|
Potential lncRNA Biomarkers for HBV-Related Hepatocellular Carcinoma Diagnosis Revealed by Analysis on Coexpression Network. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9972011. [PMID: 34692847 PMCID: PMC8536424 DOI: 10.1155/2021/9972011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022]
Abstract
Background Increasing evidence demonstrated that long noncoding RNA (lncRNA) could affect inflammatory tumor immune microenvironment by modulating gene expression and could be used as a biomarker for HBC-related hepatocellular carcinoma (HCC) but still needs further research. The aim of the present study was to determine an lncRNA signature for the diagnosis of HBV-related HCC. Methods HBV-related HCC expression profiles (GSE55092, GSE19665, and GSE84402) were abstracted from the GEO (Gene Expression Omnibus) data resource, and R package limma and RobustRankAggreg were employed to identify common differentially expressed genes (DEGs). Using machine learning, optimal diagnostic lncRNA molecular markers for HBV-related HCC were identified. The expression of candidate lncRNAs was cross-validated in GSE121248, and an ROC (receiver operating characteristic) curve of lncRNA biomarkers was carried out. Additionally, a coexpression network and functional annotation was built, after which a PPI (protein-protein interaction) network along with module analysis were conducted with the Cytoscape open source software. Result A total of 38 DElncRNAs and 543 DEmRNAs were identified with a fold change larger than 2.0 and a P value < 0.05. By machine learning, AL356056.2, AL445524.1, TRIM52-AS1, AC093642.1, EHMT2-AS1, AC003991.1, AC008040.1, LINC00844, and LINC01018 were screened out as optional diagnostic lncRNA biosignatures for HBV-related HCC. The AUC (areas under the curve) of the SVM (support vector machine) model and random forest model were 0.957 and 0.904, respectively, and the specificity and sensitivity were 95.7 and 100% and 94.3 and 86.5%, respectively. The results of functional enrichment analysis showed that the integrated coexpressed DEmRNAs shared common cascades in the p53 signaling pathway, retinol metabolism, PI3K-Akt signaling cascade, and chemical carcinogenesis. The integrated DEmRNA PPI network complex was found to be comprised of 87 nodes, and two vital modules with a high degree were selected with the MCODE app. Conclusion The present study identified nine potential diagnostic biomarkers for HBV-related HCC, all of which could potentially modulated gene expression related to inflammatory conditions in the tumor immune microenvironment. The functional annotation of the target DEmRNAs yielded novel evidence in evaluating the precise functions of lncRNA in HBV-related HCC.
Collapse
|
7
|
Zhao J, Yu SZ, Cai Q, Ma D, Jiang L, Yang LP, Yu ZY. Identifying the Key Genes in Mouse Liver Regeneration After Partial Hepatectomy by Bioinformatics Analysis and in vitro/ vivo Experiments. Front Genet 2021; 12:670706. [PMID: 34249092 PMCID: PMC8260846 DOI: 10.3389/fgene.2021.670706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background The liver is the only organ that can completely regenerate after various injuries or tissue loss. There are still a large number of gene functions in liver regeneration that have not been explored. This study aimed to identify key genes in the early stage of liver regeneration in mice after partial hepatectomy (PH). Materials and Methods We first analyzed the expression profiles of genes in mouse liver at 48 and 72 h after PH from Gene Expression Omnibus (GEO) database. Gene ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) analysis were performed to identify key genes in liver regeneration. Finally, we validated key genes in vivo and in vitro. Results We identified 46 upregulated genes and 19 downregulated genes at 48 h after PH, and 223 upregulated genes and 40 downregulated genes at 72 h after PH, respectively. These genes were mainly involved in cell cycle, DNA replication, and p53 signaling pathway. Among of these genes, cycle-related genes (Ccna2, Cdkn1a, Chek1, and Mcm5) and Ube2c were highly expressed in the residual liver both at 48 and 72 h after PH. Furthermore, Ube2c knockdown not only caused abnormal expression of Ccna2, Cdkn1a, Chek1, and Mcm5, but also inhibited transition of hepatocytes from G1 to S phase of the cell cycle in vitro. Conclusion Mouse hepatocytes enter the proliferation phase at 48 h after PH. Ube2c may mediate cell proliferation by regulating or partially regulating Ccna2, Cdkn1a, Chek1, and Mcm5.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Shi-Zhe Yu
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Cai
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Duo Ma
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Long Jiang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Ling-Peng Yang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Zhi-Yong Yu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| |
Collapse
|
8
|
Chiang AWT, Baghdassarian HM, Kellman BP, Bao B, Sorrentino JT, Liang C, Kuo CC, Masson HO, Lewis NE. Systems glycobiology for discovering drug targets, biomarkers, and rational designs for glyco-immunotherapy. J Biomed Sci 2021; 28:50. [PMID: 34158025 PMCID: PMC8218521 DOI: 10.1186/s12929-021-00746-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy has revolutionized treatment and led to an unprecedented wave of immuno-oncology research during the past two decades. In 2018, two pioneer immunotherapy innovators, Tasuku Honjo and James P. Allison, were awarded the Nobel Prize for their landmark cancer immunotherapy work regarding “cancer therapy by inhibition of negative immune regulation” –CTLA4 and PD-1 immune checkpoints. However, the challenge in the coming decade is to develop cancer immunotherapies that can more consistently treat various patients and cancer types. Overcoming this challenge requires a systemic understanding of the underlying interactions between immune cells, tumor cells, and immunotherapeutics. The role of aberrant glycosylation in this process, and how it influences tumor immunity and immunotherapy is beginning to emerge. Herein, we review current knowledge of miRNA-mediated regulatory mechanisms of glycosylation machinery, and how these carbohydrate moieties impact immune cell and tumor cell interactions. We discuss these insights in the context of clinical findings and provide an outlook on modulating the regulation of glycosylation to offer new therapeutic opportunities. Finally, in the coming age of systems glycobiology, we highlight how emerging technologies in systems glycobiology are enabling deeper insights into cancer immuno-oncology, helping identify novel drug targets and key biomarkers of cancer, and facilitating the rational design of glyco-immunotherapies. These hold great promise clinically in the immuno-oncology field.
Collapse
Affiliation(s)
- Austin W T Chiang
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA. .,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.
| | - Hratch M Baghdassarian
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Benjamin P Kellman
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Bokan Bao
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, La Jolla, San Diego, CA, 92093, USA
| | - James T Sorrentino
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Chenguang Liang
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,Department of Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Chih-Chung Kuo
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.,Department of Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Helen O Masson
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,Department of Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.,Department of Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA.,The National Biologics Facility, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Gong Z, Chen J, Wang J, Liu S, Ambrosone CB, Higgins MJ. Differential methylation and expression patterns of microRNAs in relation to breast cancer subtypes among American women of African and European ancestry. PLoS One 2021; 16:e0249229. [PMID: 33784351 PMCID: PMC8009363 DOI: 10.1371/journal.pone.0249229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
Aggressive high-grade, estrogen receptor negative (ER-) breast cancer is more common among American women of African ancestry (AA) than those of European ancestry (EA). Epigenetic mechanisms, particularly DNA methylation and altered microRNA (miRNA) expression, may contribute to racial differences in breast cancer. However, few studies have specifically characterized genome-wide DNA methylation-based modifications at the miRNA level in relation to ER+ and ER- subtype, and their functional role in the regulation of miRNA expression, especially among high risk AA women. In this study, we evaluated DNA methylation patterns of miRNA encoding genes and their effect on expression in breast tumors from both AA and EA women. The genome-wide methylation screen identified a total of 7,191 unique CpGs mapped to 1,292 miRNA genes, corresponding to 2,035 unique mature miRNAs. We identified differentially methylated loci (DMLs: (|delta β|)>0.10, FDR<0.05) between ER- and ER+ tumor subtypes, including 290 DMLs shared in both races, 317 and 136 were specific to AA and EA women, respectively. Integrated analysis identified certain DMLs whose methylation levels were significantly correlated with the expression of relevant miRNAs, such as multiple CpGs within miR-190b and miR-135b highly negatively correlated with their expression. These results were then validated in the TCGA dataset. Target prediction and pathway analysis showed that these DNA methylation-dysregulated miRNAs are involved in multiple cancer-related pathways, including cell cycle G1-S growth factor regulation, cytoskeleton remodeling, angiogenesis, EMT, and ESR1-mediated signaling pathways. In summary, our results suggest that DNA methylation changes within miRNA genes are associated with altered miRNA expression, which may contribute to the network of subtype- and race-related tumor biological differences in breast cancer. These findings support the involvement of epigenetic regulation of miRNA expression and provide insights into the relations of clinical-relevant miRNAs to their target genes, which may serve as potential preventative and therapeutic targets.
Collapse
Affiliation(s)
- Zhihong Gong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - Jianhong Chen
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - Jie Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - Christine B. Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - Michael J. Higgins
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| |
Collapse
|
10
|
Kajdasz A, Majer W, Kluzek K, Sobkowiak J, Milecki T, Derebecka N, Kwias Z, Bluyssen HAR, Wesoly J. Identification of RCC Subtype-Specific microRNAs-Meta-Analysis of High-Throughput RCC Tumor microRNA Expression Data. Cancers (Basel) 2021; 13:548. [PMID: 33535553 PMCID: PMC7867039 DOI: 10.3390/cancers13030548] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common cancers worldwide with a nearly non-symptomatic course until the advanced stages of the disease. RCC can be distinguished into three subtypes: papillary (pRCC), chromophobe (chRCC) and clear cell renal cell carcinoma (ccRCC) representing up to 75% of all RCC cases. Detection and RCC monitoring tools are limited to standard imaging techniques, in combination with non-RCC specific morphological and biochemical read-outs. RCC subtype identification relays mainly on results of pathological examination of tumor slides. Molecular, clinically applicable and ideally non-invasive tools aiding RCC management are still non-existent, although molecular characterization of RCC is relatively advanced. Hence, many research efforts concentrate on the identification of molecular markers that will assist with RCC sub-classification and monitoring. Due to stability and tissue-specificity miRNAs are promising candidates for such biomarkers. Here, we performed a meta-analysis study, utilized seven NGS and seven microarray RCC studies in order to identify subtype-specific expression of miRNAs. We concentrated on potentially oncocytoma-specific miRNAs (miRNA-424-5p, miRNA-146b-5p, miRNA-183-5p, miRNA-218-5p), pRCC-specific (miRNA-127-3p, miRNA-139-5p) and ccRCC-specific miRNAs (miRNA-200c-3p, miRNA-362-5p, miRNA-363-3p and miRNA-204-5p, 21-5p, miRNA-224-5p, miRNA-155-5p, miRNA-210-3p) and validated their expression in an independent sample set. Additionally, we found ccRCC-specific miRNAs to be differentially expressed in ccRCC tumor according to Fuhrman grades and identified alterations in their isoform composition in tumor tissue. Our results revealed that changes in the expression of selected miRNA might be potentially utilized as a tool aiding ccRCC subclass discrimination and we propose a miRNA panel aiding RCC subtype distinction.
Collapse
Affiliation(s)
- Arkadiusz Kajdasz
- Laboratory of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (K.K.); (H.A.R.B.)
| | - Weronika Majer
- Laboratory of High Throughput Technologies, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (W.M.); (N.D.)
| | - Katarzyna Kluzek
- Laboratory of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (K.K.); (H.A.R.B.)
| | - Jacek Sobkowiak
- Department of Urology, Poznan University of Medical Sciences, Szwajcarska 3, 61-285 Poznan, Poland; (J.S.); (T.M.); (Z.K.)
| | - Tomasz Milecki
- Department of Urology, Poznan University of Medical Sciences, Szwajcarska 3, 61-285 Poznan, Poland; (J.S.); (T.M.); (Z.K.)
| | - Natalia Derebecka
- Laboratory of High Throughput Technologies, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (W.M.); (N.D.)
| | - Zbigniew Kwias
- Department of Urology, Poznan University of Medical Sciences, Szwajcarska 3, 61-285 Poznan, Poland; (J.S.); (T.M.); (Z.K.)
| | - Hans A. R. Bluyssen
- Laboratory of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (K.K.); (H.A.R.B.)
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (W.M.); (N.D.)
| |
Collapse
|
11
|
Lactation Associated Genes Revealed in Holstein Dairy Cows by Weighted Gene Co-Expression Network Analysis (WGCNA). Animals (Basel) 2021; 11:ani11020314. [PMID: 33513831 PMCID: PMC7911360 DOI: 10.3390/ani11020314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Weighted gene coexpression network analysis (WGCNA) is a novel approach that can quickly analyze the relationships between genes and traits. In the past few years, studies on the gene expression changes of dairy cow mammary glands were only based on transcriptome comparisons between two lactation stages. Few studies focused on the relationships between gene expression of the dairy mammary gland and lactation stage or milk composition in a lactation cycle. In this study, we detected milk yield and composition in a lactation cycle. For the first time, we constructed a gene coexpression network using WGCNA on the basis of 18 gene expression profiles during six stages of a lactation cycle by transcriptome sequencing, generating 10 specific modules. Genes in each module were performed with gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Module–trait relationship analysis showed a series of potential candidates related to milk yield and composition. The current study provides an important theoretical basis for the further molecular breeding of dairy cows. Abstract Weighted gene coexpression network analysis (WGCNA) is a novel approach that can quickly analyze the relationships between genes and traits. In this study, the milk yield, lactose, fat, and protein of Holstein dairy cows were detected in a lactation cycle. Meanwhile, a total of 18 gene expression profiles were detected using mammary glands from six lactation stages (day 7 to calving, −7 d; day 30 post-calving, 30 d; day 90 post-calving, 90 d; day 180 post-calving, 180 d; day 270 post-calving, 270 d; day 315 post-calving, 315 d). On the basis of the 18 profiles, WGCNA identified for the first time 10 significant modules that may be related to lactation stage, milk yield, and the main milk composition content. Genes in the 10 significant modules were examined with gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The results revealed that the galactose metabolism pathway was a potential candidate for milk yield and milk lactose synthesis. In −7 d, ion transportation was more frequent and cell proliferation related terms became active. In late lactation, the suppressor of cytokine signaling 3 (SOCS3) might play a role in apoptosis. The sphingolipid signaling pathway was a potential candidate for milk fat synthesis. Dairy cows at 315 d were in a period of cell proliferation. Another notable phenomenon was that nonlactating dairy cows had a more regular circadian rhythm after a cycle of lactation. The results provide an important theoretical basis for the further molecular breeding of dairy cows.
Collapse
|
12
|
Niespolo C, Johnston JM, Deshmukh SR, Satam S, Shologu Z, Villacanas O, Sudbery IM, Wilson HL, Kiss-Toth E. Tribbles-1 Expression and Its Function to Control Inflammatory Cytokines, Including Interleukin-8 Levels are Regulated by miRNAs in Macrophages and Prostate Cancer Cells. Front Immunol 2020; 11:574046. [PMID: 33329538 PMCID: PMC7728618 DOI: 10.3389/fimmu.2020.574046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
The pseudokinase TRIB1 controls cell function in a range of contexts, by regulating MAP kinase activation and mediating protein degradation via the COP1 ubiquitin ligase. TRIB1 regulates polarization of macrophages and dysregulated Trib1 expression in murine models has been shown to alter atherosclerosis burden and adipose homeostasis. Recently, TRIB1 has also been implicated in the pathogenesis of prostate cancer, where it is often overexpressed, even in the absence of genetic amplification. Well described TRIB1 effectors include MAP kinases and C/EBP transcription factors, both in immune cells and in carcinogenesis. However, the mechanisms that regulate TRIB1 itself remain elusive. Here, we show that the long and conserved 3’untranslated region (3’UTR) of TRIB1 is targeted by miRNAs in macrophage and prostate cancer models. By using a systematic in silico analysis, we identified multiple “high confidence” miRNAs potentially binding to the 3’UTR of TRIB1 and report that miR-101-3p and miR-132-3p are direct regulators of TRIB1 expression and function. Binding of miR-101-3p and miR-132-3p to the 3’UTR of TRIB1 mRNA leads to an increased transcription and secretion of interleukin-8. Our data demonstrate that modulation of TRIB1 by miRNAs alters the inflammatory profile of both human macrophages and prostate cancer cells.
Collapse
Affiliation(s)
- Chiara Niespolo
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Jessica M Johnston
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Sumeet R Deshmukh
- Department of Molecular Biology and Biotechnology, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, United Kingdom
| | - Swapna Satam
- Institute for Diabetes and Cancer IDC, Helmholtz Center, Munich, Germany
| | - Ziyanda Shologu
- Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | - Ian M Sudbery
- Department of Molecular Biology and Biotechnology, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, United Kingdom
| | - Heather L Wilson
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
13
|
Zheng Q, Yu JJ, Li C, Li J, Wang J, Wang S. miR-224 targets BTRC and promotes cell migration and invasion in colorectal cancer. 3 Biotech 2020; 10:485. [PMID: 33117626 PMCID: PMC7585582 DOI: 10.1007/s13205-020-02477-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Our study aims to investigate the impact of miR-224 on cell migration and invasion in colorectal cancer (CRC) as well as its molecular mechanisms. The results showed that miR-224 was significantly upregulated in CRC compared to normal tissues via the TCGA database. Overexpression of miR-224 promoted CRC cell migration and invasion, while inhibition of miR-224 demonstrated the opposite result via transwell assays. In addition, we found that BTRC was a target gene of miR-224 through the miRecords database and dual-luciferase assay, while western blot together with RT-qPCR showed that inhibition of miR-224 led to elevated BTRC expression in protein level but not in mRNA level, and also decreased the expression of β-catenin. In reference to the Human Protein Atlas, BTRC protein expression was higher in normal tissues than in CRC tissues. In conclusion, miR-224 regulates its target BTRC protein expression and its related Wnt/β-catenin pathway. Its impact on cell migration and invasion in CRC cells suggested that miR-224 could be a prospective therapeutic target for early-stage non-metastatic CRC.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 131 Dong’an Road, Shanghai, 200032 Shanghai China
| | - Jane J. Yu
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA
| | - Chenggang Li
- State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Jiali Li
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiping Wang
- Division of Surgical Oncology, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA USA
| | - Shuyang Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 131 Dong’an Road, Shanghai, 200032 Shanghai China
| |
Collapse
|
14
|
Abstract
Glycosylation is a sophisticated informational system that controls specific biological functions at the cellular and organismal level. Dysregulation of glycosylation may underlie some of the most complex and common diseases of the modern era. In the past 5 years, microRNAs have come to the forefront as a critical regulator of the glycome. Herein, we review the current literature on miRNA regulation of glycosylation and how this work may point to a new way to identify the biological importance of glycosylation enzymes.
Collapse
Affiliation(s)
- Chu T Thu
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Lara K Mahal
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
15
|
Feng H, Wang Q, Xiao W, Zhang B, Jin Y, Lu H. LncRNA TTN-AS1 Regulates miR-524-5p and RRM2 to Promote Breast Cancer Progression. Onco Targets Ther 2020; 13:4799-4811. [PMID: 32547107 PMCID: PMC7261692 DOI: 10.2147/ott.s243482] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Background Recent studies suggest many long non-coding RNAs (lncRNAs) are crucial oncogenes or tumor suppressors. This study intended to investigate the biological function and mechanism of lncRNA TTN antisense RNA 1 (TTN-AS1) in the progression of breast cancer (BC). Materials and Methods BC tissue samples were collected. The expression of TTN-AS1 in BC tissues and adjacent tissues was detected by qRT-PCR, and the relationship between pathological indicators and TTN-AS1 expression was analyzed by chi-square test. BC cell lines T47D and BT549 were utilized as cell models. CCK-8 assay and BrdU assay were used to detect the effect of TTN-AS1 on BC cell proliferation. Transwell assay was used to detect the effects of TTN-AS1 on cell migration and invasion. In addition, dual-luciferase reporter gene assay was used to confirm the targeting relationship between miR-524-5p and TTN-AS1. Western blot was used to detect the function of TTN-AS1 on regulating ribonucleotide reductase subunit 2 (RRM2) and survivin. Additionally, subcutaneous xenotransplanted tumor model and tail vein injection model were constructed in vivo. Results The expression of TTN-AS1 in BC tissues was significantly higher than that in normal tissues, and its high expression was correlated with adverse pathological indicators. Overexpression of TTN-AS1 significantly promoted the proliferation, migration and invasion of BC cells. TTN-AS1 knockdown suppressed the malignant phenotypes of BC cells. TTN-AS1 overexpression significantly impeded the expression of miR-524-5p, but increased the expression of RRM2. Conclusion TTN-AS1 exerts oncogenic function in BC by repressing miR-524-5p and increasing the expression of RRM2.
Collapse
Affiliation(s)
- Hui Feng
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Qi Wang
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Wenjing Xiao
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Biyuan Zhang
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Yonglong Jin
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Haijun Lu
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| |
Collapse
|
16
|
The miRNAs Role in Melanoma and in Its Resistance to Therapy. Int J Mol Sci 2020; 21:ijms21030878. [PMID: 32013263 PMCID: PMC7037367 DOI: 10.3390/ijms21030878] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the less common but the most malignant skin cancer. Since the survival rate of melanoma metastasis is about 10–15%, many different studies have been carried out in order to find a more effective treatment. Although the development of target-based therapies and immunotherapeutic strategies has improved chances for patient survival, melanoma treatment still remains a big challenge for oncologists. Here, we collect recent data about the emerging role of melanoma-associated microRNAs (miRNAs) currently available treatments, and their involvement in drug resistance. We also reviewed miRNAs as prognostic factors, because of their chemical stability and resistance to RNase activity, in melanoma progression. Moreover, despite miRNAs being considered small conserved regulators with the limitation of target specificity, we outline the dual role of melanoma-associated miRNAs, as oncogenic and/or tumor suppressive factors, compared to other tumors.
Collapse
|