1
|
Zhao M, Yuan H, Yang G, Wang Y, Bu Y, Zhang H, Zhao L, Lv P, Yun H, Geng Y, Feng J, Hou C, Wang S, Zhang N, Lu W, Zhang X. Tumour cell-expressed PD-L1 reprograms lipid metabolism via EGFR/ITGB4/SREBP1c signalling in liver cancer. JHEP Rep 2024; 6:101009. [PMID: 38455469 PMCID: PMC10918563 DOI: 10.1016/j.jhepr.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 03/09/2024] Open
Abstract
Background & Aims The programmed death-ligand 1 (PD-L1) is a major co-inhibitory checkpoint factor that controls T-cell activities in tumours. PD-L1 is expressed on immune cells and tumour cells. Whether tumour cell-expressed PD-L1 affects tumour cells in an immune cell-independent fashion remains largely elusive. In this study, we investigated the significance of tumour cell-expressed PD-L1 with a focus on downstream signals and changes in lipid metabolism. Methods Immune-independent functions of PD-L1 in tumour growth were investigated in vitro and in immuno-deficient mice in vivo. The global influence of PD-L1 in targeted/untargeted lipidomic metabolites was studied by comprehensive mass spectrometry-based metabolomic analysis in liver cancer. Effects on lipid metabolism were confirmed by triglyceride and cholesterol assays as well as by Oil Red O staining in liver, pancreatic, breast, and oesophageal squamous cancer. Underlying mechanisms were investigated by real-time quantitative PCR, Western blot analysis, co-immunoprecipitation, pull-down assays, immunofluorescence staining, and RNA sequencing. Results PD-L1 enhanced the accumulation of triglycerides, cholesterol, and lipid droplets in tumours. PD-L1 influenced targeted/untargeted lipidomic metabolites in hepatoma, including lipid metabolism, glucose metabolism, amino acid metabolism, nucleotide metabolism, and energy metabolism, suggesting that PD-L1 globally modulates the metabolic reprogramming of tumours. Mechanistically, PD-L1 activated epidermal growth factor receptor (EGFR) and/or integrin β4 (ITGB4) by forming a complex of PD-L1/EGFR/ITGB4 in the cell membrane, prior to activating PI3K/mTOR/SREBP1c signalling, leading to reprogramming of lipid metabolism in tumours. Functionally, PD-L1-mediated lipid metabolism reprogramming supported the tumour growth in vitro and in vivo through EGFR and/or ITGB4 in an immune cell-independent manner. Conclusions Our findings on lipogenesis and EGFR activation by tumour cell-expressed PD-L1 suggest that, in addition to its immunostimulatory effects, anti-PD-L1 may restrict lipid metabolism and EGFR/ITGB4 signalling in liver cancer therapy. Impact and implications In this study, we present evidence that PD-L1 drives the reprogramming of lipid metabolism in tumours. PD-L1 forms a complex with epidermal growth factor receptor (EGFR) and ITGB4, activating the PI3K/Akt/mTOR/SREBP1c signalling pathway and thereby contributing to lipid metabolism in cancer progression. Our findings offer novel insights into the mechanisms by which PD-L1 initiates the reprogramming of lipid metabolism in tumours. From a clinical perspective, the anti-PD-L1 antibody may alleviate resistance to the anti-EGFR antibody cetuximab and inhibit the reprogramming of lipid metabolism in tumours.
Collapse
Affiliation(s)
- Man Zhao
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin 300060, P.R. China
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Hongfeng Yuan
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin 300060, P.R. China
| | - Guang Yang
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin 300060, P.R. China
| | - Yufei Wang
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin 300060, P.R. China
| | - Yanan Bu
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Huihui Zhang
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin 300060, P.R. China
| | - Lina Zhao
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin 300060, P.R. China
| | - Pan Lv
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin 300060, P.R. China
| | - Haolin Yun
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Yu Geng
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Jinyan Feng
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Chunyu Hou
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin 300060, P.R. China
| | - Shuai Wang
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, P.R. China
| | - Ningning Zhang
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, P.R. China
| | - Wei Lu
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, P.R. China
| | - Xiaodong Zhang
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin 300060, P.R. China
| |
Collapse
|
2
|
Luo L, Jiang M, Xiong Y, Xiong A, Zhang L, Wu D, Liu Y, Ran Q, Liu J, Zhang Y, Li J, He X, Wang J, Li G. Fine particulate matter 2.5 induces susceptibility to Pseudomonas aeruginosa infection via expansion of PD-L1 high neutrophils in mice. Respir Res 2024; 25:90. [PMID: 38355515 PMCID: PMC10865610 DOI: 10.1186/s12931-023-02640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/15/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Exposure to PM2.5 has been implicated in a range of detrimental health effects, particularly affecting the respiratory system. However, the precise underlying mechanisms remain elusive. METHODS To address this objective, we collected ambient PM2.5 and administered intranasal challenges to mice, followed by single-cell RNA sequencing (scRNA-seq) to unravel the heterogeneity of neutrophils and unveil their gene expression profiles. Flow cytometry and immunofluorescence staining were subsequently conducted to validate the obtained results. Furthermore, we assessed the phagocytic potential of neutrophils upon PM2.5 exposure using gene analysis of phagocytosis signatures and bacterial uptake assays. Additionally, we utilized a mouse pneumonia model to evaluate the susceptibility of PM2.5-exposed mice to Pseudomonas aeruginosa infection. RESULTS Our study revealed a significant increase in neutrophil recruitment within the lungs of PM2.5-exposed mice, with subclustering of neutrophils uncovering subsets with distinct gene expression profiles. Notably, exposure to PM2.5 was associated with an expansion of PD-L1high neutrophils, which exhibited impaired phagocytic function dependent upon PD-L1 expression. Furthermore, PM2.5 exposure was found to increase the susceptibility of mice to Pseudomonas aeruginosa, due in part to increased PD-L1 expression on neutrophils. Importantly, monoclonal antibody targeting of PD-L1 significantly reduced bacterial burden, dissemination, and lung inflammation in PM2.5-exposed mice upon Pseudomonas aeruginosa infection. CONCLUSIONS Our study suggests that PM2.5 exposure promotes expansion of PD-L1high neutrophils with impaired phagocytic function in mouse lungs, contributing to increased vulnerability to bacterial infection, and therefore targeting PD-L1 may be a therapeutic strategy for reducing the harmful effects of PM2.5 exposure on the immune system.
Collapse
Affiliation(s)
- Li Luo
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Manling Jiang
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macao Special Administrative Region, Taipa, China
| | - Ying Xiong
- Department of Pulmonary and Critical Care Medicine, Sichuan Friendship Hospital, Chengdu, China
| | - Anying Xiong
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macao Special Administrative Region, Taipa, China
| | - Dehong Wu
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Yao Liu
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macao Special Administrative Region, Taipa, China
| | - Qin Ran
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Jiliu Liu
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Yi Zhang
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Jiahuan Li
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- North Sichuan Medical College, Nanchong, China
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macao Special Administrative Region, Taipa, China.
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
3
|
Hanroongsri J, Amornphimoltham P, Younis RH, Chaisuparat R. Expression of PD-L1 and p-RPS6 in epithelial dysplasia and squamous cell carcinoma of the oral cavity. FRONTIERS IN ORAL HEALTH 2024; 5:1337582. [PMID: 38370876 PMCID: PMC10869481 DOI: 10.3389/froh.2024.1337582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/02/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Oral squamous cell carcinoma (OSCC) is often preceded by oral epithelial dysplasia (OED). The role of ribosomal protein S6 (RPS6) and programmed cell death ligand-1 (PD-L1) in the progression of OED to OSCC remains unclear. This study aimed to investigate the expression of phosphorylated RPS6 (p-RPS6) and PD-L1 in OSCC and OED and to examine its relationship with clinicopathological features. Methods Fifty-two OSCC and 48 OED cases were recruited for immunohistochemical analysis of p-RPS6 and PD-L1 expression. The expression of markers was correlated with clinicopathological features of OSCC and OED. Results We found p-RPS6 expression in all cases of OSCC and OED, whereas PD-L1 was expressed in 42/48 (87%) OED and in 28/52 (53%) OSCC. The patients with mild OED presented higher expression level of PD-L1 and p-RPS6 significantly, when compared to moderate-differentiated OSCC patients (p < 0.05). Moreover, we found a significant positive correlation between PD-L1 and p-RPS6 expression in OED and OSCC patients (p < 0.01). The PD-L1 expression was significantly related to more than 2 cm tumor size in OSCC patients (p = 0.007). Discussion Our findings suggest the upregulation of PD-L1 may be related with activation of the mTOR pathway in the early events of tumor progression and the pathogenesis of OSCC.
Collapse
Affiliation(s)
- Jaruwat Hanroongsri
- Division of Oral Diagnostic Sciences, Faculty of Dentistry, Thammasat University, Pathumthani, Thailand
| | | | - Rania H. Younis
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Risa Chaisuparat
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Avatar Biotechnologies for Oral Heath and Healthy Longevity, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Li K, Zeng X, Liu P, Zeng X, Lv J, Qiu S, Zhang P. The Role of Inflammation-Associated Factors in Head and Neck Squamous Cell Carcinoma. J Inflamm Res 2023; 16:4301-4315. [PMID: 37791117 PMCID: PMC10544098 DOI: 10.2147/jir.s428358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), which originates in the head or neck tissues, is characterized by high rates of recurrence and metastasis. Inflammation is important in HNSCC prognosis. Inflammatory cells and their secreted factors contribute to the various stages of HNSCC development through multiple mechanisms. In this review, the mechanisms through which inflammatory factors, signaling pathways, and cells contribute to the initiation and progression of HNSCC have been discussed in detail. Furthermore, the diagnostic and therapeutic potential of targeting inflammation in HNSCC has been discussed to gain new insights into improving patient prognosis.
Collapse
Affiliation(s)
- Kang Li
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Xianhai Zeng
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Peng Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Xiaoxia Zeng
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Jie Lv
- School of Computer Science and Engineering, Yulin Normal University, Yulin, Guangxi, People’s Republic of China
| | - Shuqi Qiu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Peng Zhang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
5
|
Davern M, Donlon NE. The future of combination immunotherapy in oesophageal adenocarcinoma. Front Immunol 2023; 14:1217132. [PMID: 37520544 PMCID: PMC10375285 DOI: 10.3389/fimmu.2023.1217132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 08/01/2023] Open
Affiliation(s)
- Maria Davern
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Noel E. Donlon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Department of Upper GI Surgery, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
6
|
Li S, Wang D, Cheng J, Sun J, Kalvakolanu DV, Zhao X, Wang D, You Y, Zhang L, Yu D. A photodynamically sensitized dendritic cell vaccine that promotes the anti-tumor effects of anti-PD-L1 monoclonal antibody in a murine model of head and neck squamous cell carcinoma. J Transl Med 2022; 20:505. [PMID: 36329529 PMCID: PMC9635135 DOI: 10.1186/s12967-022-03707-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors are promising tools in combating several cancers, including head and neck squamous cell carcinoma (HNSCC). However, a substantial portion of HNSCC patients do not respond to PD-L1 antibody. Here we describe a photodynamic therapeutic (PDT) approach to enhance anti-tumor effects of the anti-PD-L1 antibody. METHODS Phototoxicity of PDT was confirmed using fluorescence microscopy, Cell Counting Kit-8 (CCK-8), Enzyme Linked Immunosorbent Assay (ELISA) and flow cytometry analyses. Phenotypic and functional maturation of immature DCs (imDCs) induced by PDT were measured using flow cytometry and ELISA. A mouse model was established using the HNSCC line, SCC7, and was used to evaluate therapeutic effects of PDT-DC vaccine in facilitating anti-tumor immunity of PD-L1 antibody. RESULTS Immunogenic cell death (ICD) of SCC7 cells was induced by PDT with 0.5 µM of m-THPC and the 5 J/cm2 of light dose. ICD of SCC7 cells stimulated imDCs maturation. In vivo assays suggested that PDT-DC vaccine and anti-PD-L1 mAb synergistically induced anti-tumor immunity and suppressed tumor progression. CONCLUSION PDT-DC vaccine enhances therapeutic effects of PD-L1 antibody, which might provide a novel approach for HNSCC immunotherapy.
Collapse
Affiliation(s)
- Shuang Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, 130041, Changchun, Jilin Province, People's Republic of China
| | - Ding Wang
- Key Laboratory of Pathobiology, Department of pathophysiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, 126 Xinmin Street, 130012, Changchun, Jilin, P.R. China
| | - Jinzhang Cheng
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, 130041, Changchun, Jilin Province, People's Republic of China
| | - Jicheng Sun
- Key Laboratory of Pathobiology, Department of pathophysiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, 126 Xinmin Street, 130012, Changchun, Jilin, P.R. China
| | - Dhan V Kalvakolanu
- Key Laboratory of Pathobiology, Department of pathophysiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, 126 Xinmin Street, 130012, Changchun, Jilin, P.R. China.,Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology, University of Maryland School Medicine, Baltimore, MD, USA
| | - Xue Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, 130041, Changchun, Jilin Province, People's Republic of China
| | - Di Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, 130041, Changchun, Jilin Province, People's Republic of China
| | - Yunhan You
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, 130041, Changchun, Jilin Province, People's Republic of China
| | - Ling Zhang
- Key Laboratory of Pathobiology, Department of pathophysiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, 126 Xinmin Street, 130012, Changchun, Jilin, P.R. China.
| | - Dan Yu
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, 130041, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
7
|
Srivastava S, Rastogi M, Gandhi AK, Khurana R, Hadi R, Sapru S, Srivastava A, Bharati A, Husain N, Mishra SP, Sahni K. Correlation of PD-L1 expression with toxicities and response in oropharyngeal cancers treated with definitive chemoradiotherapy. Contemp Oncol (Pozn) 2022; 26:180-186. [PMID: 36381672 PMCID: PMC9641626 DOI: 10.5114/wo.2022.118227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/10/2022] [Indexed: 10/12/2024] Open
Abstract
INTRODUCTION The programmed death receptor ligand 1 (PD-L1) is a cell-surface glycoprotein expressed in tumour cells (TCs) and is also upregulated in tumour infiltrating lymphocytes. The effect of PD-L1 expression on TCs and tumour-infiltrating lymphocytes (TILs) on acute radiation toxicity and response in oropharyngeal squamous cell carcinoma treated with concurrent chemoradiotherapy is less known. MATERIAL AND METHODS Squamous cell carcinoma of oropharynx with stage II-IVA (AJCC 8th) were recruited in this prospective observational study. Definitive radiation therapy (RT) of 70 Gray in 35 fractions at 2 Gray per fraction, 5 fractions a week in 2 phases was delivered with concurrent chemotherapy (cisplatin 40 mg/m2 weekly). Patients were assessed weekly for acute toxicities with Radiation Therapy Oncology Group criteria. Response assessment was done at 3 months post RT according to World Health Organization response assessment criteria. The programmed death receptor ligand 1 expression in TCs and TILs was correlated with acute toxicity and survival. RESULTS Of 51 patients, 20 (39.2%) had PD-L1 expression in TCs and 18 (35.3%) in TILs. Patients with PD-L1 expression in TCs had fewer grade ≥ 3 oral mucositis (25% vs. 58%; p = 0.02) and grade ≥ 3 dysphagia (25% vs. 55%; p = 0.046). The programmed death receptor ligand 1-tumour infiltrating lymphocytes positives had lower ≥ 3 grade oral mucositis (22% vs. 58%; p = 0.02) and ≥ 3 grade dysphagia (17% vs. 58%; p = 0.007). Two-year overall and progression-free survival rate for the PD-L1-tumour-positive vs. PD-L1-tumour-negative group was not different (p > 0.5). CONCLUSIONS Positive PD-L1 expression is associated with fewer acute radiation toxicities, and this could be used as a potential biomarker.
Collapse
Affiliation(s)
- Smriti Srivastava
- Department of Radiation Oncology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Madhup Rastogi
- Department of Radiation Oncology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Ajeet Kumar Gandhi
- Department of Radiation Oncology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Rohini Khurana
- Department of Radiation Oncology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Rahat Hadi
- Department of Radiation Oncology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Shantanu Sapru
- Department of Radiation Oncology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Anoop Srivastava
- Medical Physics, Department of Radiation Oncology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Avinav Bharati
- Medical Physics, Department of Radiation Oncology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Nuzhat Husain
- Department of Pathology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Surendra Prasad Mishra
- Medical Physics, Department of Radiation Oncology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Kamal Sahni
- Department of Radiation Oncology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
8
|
Fu L, Fan J, Maity S, McFadden G, Shi Y, Kong W. PD-L1 interacts with Frizzled 6 to activate β-catenin and form a positive feedback loop to promote cancer stem cell expansion. Oncogene 2022; 41:1100-1113. [PMID: 35034965 DOI: 10.1038/s41388-021-02144-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) drive tumor initiation, progression, metastasis, and drug resistance. We report here that programmed cell death ligand 1 (PD-L1) is constitutively expressed in cancer cells to maintain and expand CSC through a novel mechanism in addition to promoting cancer cell immune evasion. We discovered that PD-L1 interacts with receptor Frizzled 6 to activate β-catenin signaling and increase β-catenin-targeted gene expression, such as a putative stem cell marker leucine-rich-repeat-containing G-protein-coupled receptor 5. Blockage of PD-L1 function, using a specific small hairpin RNA or a specific antibody, inhibits disease progression by reducing the CSC population in both colorectal and breast tumors. Moreover, β-catenin conversely regulates PD-L1 expression through a β-catenin complex binding site in the PD-L1 promoter. Our discoveries reveal that besides assistant tumor cell immune escaping, PD-L1 and β-catenin signaling form a positive feedback loop to promote cancer progression through CSC maintenance and expansion.
Collapse
Affiliation(s)
- Lingchen Fu
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sudipa Maity
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Grant McFadden
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Yixin Shi
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Wei Kong
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
9
|
Li Q, Sun L, Liu L, Ran Q, Du X, Yang Q, Wang Y, Li Y, Chen Y, Weng X, Cai W, Zhu X. Chamaejasmenin B, an Inhibitor for Metastatic Outgrowth, Reversed M2-Dominant Macrophage Polarization in Breast Tumor Microenvironment. Front Immunol 2022; 12:774230. [PMID: 35027915 PMCID: PMC8750059 DOI: 10.3389/fimmu.2021.774230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
Metastasis is a multistep process that depends on the interactions between tumor cells and their microenvironment. Macrophages in the tumor microenvironment show high polarization plasticity and have a paradoxical role in cancer progression. Hijacked by tumor-promoting signals, the polarization status of macrophages was pathologically disturbed and believed to be the decisive mechanism forcing the progression of metastasis. In this study, we explored the immunological activity of Chamaejasmin B (ICJ), a previously proved inhibitor for metastasis, in macrophages from metastatic microenvironment. When intravenously injected of 4T1 cells in mice, ICJ significantly inhibited its metastatic outgrowth. Taking tumor cell and macrophage as a functional integrity, an adoptive transfer model was established in vitro to exclude the direct effect of ICJ on tumor. The findings suggest a dual influence of ICJ on both tumors and macrophages, as indicated by the rebalance of macrophage polarization and suppression of clonogenic potential in tumor cells. Mechanistically, ICJ redirected M2-dominant polarization of tumor-associated macrophage in an IL-4-mTOR-dependent manner. Collectively, our study revealed that ICJ rebalanced macrophage polarization in malignant microenvironment and showed promising effect in suppressing metastatic outgrowth in breast cancer model.
Collapse
Affiliation(s)
- Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lidong Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingsen Ran
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinke Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Metformin inhibits human non-small cell lung cancer by regulating AMPK-CEBPB-PDL1 signaling pathway. Cancer Immunol Immunother 2021; 71:1733-1746. [PMID: 34837101 DOI: 10.1007/s00262-021-03116-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022]
Abstract
Metformin has been found to have inhibitory effects on a variety of tumors. However, its effects on non-small cell lung cancer (NSCLC) remain unclear. We demonstrated that metformin could inhibit the proliferation of A549 and H1299 cells. RNA transcriptome sequencing revealed that PDL1 was significantly downregulated in both cell types following treatment with metformin (P < 0.001). Jaspar analysis and chromatin immunoprecipitation showed that CEBPB could directly bind the promoter region of PDL1. Western blotting showed that protein expression of the isoforms CEBPB-LAP*, CEBPB-LAP, and CEBPB-LIP was significantly upregulated and the LIP/LAP ratio was increased. Gene chip analysis showed that PDL1 was significantly upregulated in A549-CEBPB-LAP cells and significantly downregulated in A549-CEBPB-LIP cells (P < 0.05) compared with CEBPB-NC cells. Dual-luciferase reporter gene assay showed that CEBPB-LAP overexpression could promote transcription of PDL1 and CEBPB-LIP overexpression could inhibit the process. Functional assays showed that the changes in CEBPB isoforms affected the function of NSCLC cells. Western blotting showed that metformin could regulate the function of NSCLC cells via AMPK-CEBPB-PDL1 signaling. Animal experiments showed that tumor growth was significantly inhibited by metformin, and atezolizumab and metformin had a synergistic effect on tumor growth. A total of 1247 patients were retrospectively analyzed, including 166 and 1081 patients in metformin and control groups, respectively. The positive rate of PDL1 was lower than that of the control group (HR = 0.338, 95% CI = 0.235-0.487; P < 0.001). In conclusion, metformin inhibited the proliferation of NSCLC cells and played an anti-tumor role in an AMPK-CEBPB-PDL1 signaling-dependent manner.
Collapse
|
11
|
Beltrán Hernández I, Grinwis GC, Di Maggio A, van Bergen en Henegouwen PM, Hennink WE, Teske E, Hesselink JW, van Nimwegen SA, Mol JA, Oliveira S. Nanobody-targeted photodynamic therapy for the treatment of feline oral carcinoma: a step towards translation to the veterinary clinic. NANOPHOTONICS 2021; 10:3075-3087. [PMID: 36405501 PMCID: PMC9646246 DOI: 10.1515/nanoph-2021-0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/05/2021] [Indexed: 05/03/2023]
Abstract
Nanobody-targeted photodynamic therapy (NB-PDT) has been developed as a potent and tumor-selective treatment, using nanobodies (NBs) to deliver a photosensitizer (PS) specifically to cancer cells. Upon local light application, reactive oxygen species are formed and consequent cell death occurs. NB-PDT has preclinically shown evident success and we next aim to treat cats with oral squamous cell carcinoma (OSCC), which has very limited therapeutic options and is regarded as a natural model of human head and neck SCC. Immunohistochemistry of feline OSCC tissue confirmed that the epidermal growth factor receptor (EGFR) is a relevant target with expression in cancer cells and not in the surrounding stroma. Three feline OSCC cell lines were employed together with a well-characterized human cancer cell line (HeLa), all with similar EGFR expression, and a low EGFR-expressing human cell line (MCF7), mirroring the EGFR expression level in the surrounding mucosal stroma. NBA was identified as a NB binding human and feline EGFR with comparable high affinity. This NB was developed into NiBh, a NB-PS conjugate with high PS payload able to effectively kill feline OSCC and HeLa cell lines, after illumination. Importantly, the specificity of NB-PDT was confirmed in co-cultures where only the feline OSCC cells were killed while surrounding MCF7 cells were unaffected. Altogether, NiBh can be used for NB-PDT to treat feline OSCC and further advance NB-PDT towards the human clinic.
Collapse
Affiliation(s)
- Irati Beltrán Hernández
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CGUtrecht, the Netherlands
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CHUtrecht, the Netherlands
| | - Guillaume C.M. Grinwis
- Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CLUtrecht, the Netherlands
| | - Alessia Di Maggio
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CHUtrecht, the Netherlands
| | - Paul M.P. van Bergen en Henegouwen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CHUtrecht, the Netherlands
| | - Wim E. Hennink
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CGUtrecht, the Netherlands
| | - Erik Teske
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CMUtrecht, the Netherlands
| | - Jan W. Hesselink
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CMUtrecht, the Netherlands
| | - Sebastiaan A. van Nimwegen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CMUtrecht, the Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CMUtrecht, the Netherlands
| | - Sabrina Oliveira
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CGUtrecht, the Netherlands
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CHUtrecht, the Netherlands
| |
Collapse
|
12
|
Shen LF, Zhou SH, Guo Y. Role of GLUT-1 in the Upregulation of PD-L1 Expression After Radiotherapy and Association of PD-L1 with Favourable Overall Survival in Hypopharyngeal Cancer. Onco Targets Ther 2020; 13:11221-11235. [PMID: 33173312 PMCID: PMC7648563 DOI: 10.2147/ott.s269767] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose The alteration of tumor immunity after radiotherapy (RT) has been widely studied in recent years. However, the mechanism through which RT mediates tumor immunity and the involvement of glycolysis in this mediation in hypopharyngeal cancer remain unclear. This study investigated whether RT regulates programmed cell death ligand 1(PD-L1) partly via glucose transporter 1(GLUT-1) expression and whether PD-L1 expression predicts overall survival (OS) in patients with hypopharyngeal cancer. Methods The expression of PD-L1 and Glut-1, and the numbers of CD4+, CD8+ T cells were detected by immunohistochemical analysis on 47 pre-RT and 25 post-RT specimens of hypopharyngeal cancer. Changes in these indicators before and after RT were compared, and their association with the OS of patients was analyzed. Moreover, we used siRNA-GLUT-1 to inhibit GLUT-1 expression and examined whether GLUT-1 was a key factor involved in the mediation of PD-L1 expression by RT in vitro. Results In the multivariate analysis, patients with higher PD-L1 expression (p=0.037), higher CD4+ T cell infiltration (p=0.016) and earlier clinical stage (p=0.019) had favourable OS. The expression of PD-L1, and the CD4+ and CD8+ T cells was markedly increased following RT. PD-L1 expression was correlated with Glut-1 pre-RT (p=0.002), but not after RT (p=0.051). The expression of PD-L1 in FaDu cells was upregulated after RT, especially at 96h after RT in vitro. However, the expression of PD-L1 in siRNA-GLUT-1 FaDu cells was markedly decreased at 96h after RT compared with that measured in FaDu cells. Conclusion Patients with high PD-L1 expression and CD4+ T cell infiltration may have favourable OS in hypopharyngeal cancer. RT may increase PD-L1 expression and alter tumor immunity. The expression of PD-L1 was correlated with Glut-1, and inhibition of GLUT-1 expression may decrease the expression of PD-L1. GLUT-1 may participate in the alteration of tumor immunity after RT.
Collapse
Affiliation(s)
- Li-Fang Shen
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yu Guo
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
13
|
Zhang Y, Dong X, Bai L, Shang X, Zeng Y. MUC1-induced immunosuppression in colon cancer can be reversed by blocking the PD1/PDL1 signaling pathway. Oncol Lett 2020; 20:317. [PMID: 33133253 PMCID: PMC7590440 DOI: 10.3892/ol.2020.12180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Mucin1 (MUC1) upregulation in colon cancer has been linked to poor patient outcomes and advanced stage at diagnosis. This is partially due to MUC1-mediated inhibition of T-cell proliferation affecting efficient lysis by cytotoxic lymphocytes, which contributes to escape from immune surveillance. In the present study, human colorectal cancer tissues were collected, and MUC1-positive and MUC1-negative colon cancer mouse models were prepared; subsequently, the number and function of immune cells in tumor tissues were measured using flow cytometry. The present study revealed that MUC1, as a tumor-associated antigen, can recruit more tumor-infiltrating lymphocytes into the tumor microenvironment compared with MUC1-negative colon cancer, but that these cells could not serve antitumor roles. Conversely, the present study demonstrated that MUC1-positive colon cancer attracted more regulatory T cells (Treg cells), myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) to the tumor site than MUC1-negative colon cancer. Furthermore, the data suggested that programmed death protein 1 (PD1)-programmed death ligand 1 (PDL1) expression is greater in MUC1-positive colon cancer. Blocking the PD1-PDL1 signaling pathway reduced the percentage of Treg cells, MDSCs and TAMs in the tumor microenvironment, enhanced T-cell cytotoxicity and inhibited tumor growth, prolonging the survival time of MUC1-positive tumor-bearing mice. Therefore, the present study elucidated the role of MUC1 in tumor immune escape and provides a foundation for the application of PDL1 inhibitors to MUC1-positive colon cancer.
Collapse
Affiliation(s)
- Yinghui Zhang
- Department of Gastroenterology, The Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Xiangqian Dong
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Diseases, Kunming, Yunnan 650032, P.R. China
| | - Liping Bai
- Department of Gastroenterology, The Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Xueqin Shang
- Department of Medical Oncology, The Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Yujian Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
14
|
Chen SMY, Krinsky AL, Woolaver RA, Wang X, Chen Z, Wang JH. Tumor immune microenvironment in head and neck cancers. Mol Carcinog 2020; 59:766-774. [PMID: 32017286 DOI: 10.1002/mc.23162] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
Head and neck cancers are a heterogeneous group of tumors that are highly aggressive and collectively represent the sixth most common cancer worldwide. Ninety percent of head and neck cancers are squamous cell carcinomas (HNSCCs). The tumor microenvironment (TME) of HNSCCs consists of many different subsets of cells that infiltrate the tumors and interact with the tumor cells or with each other through various networks. Both innate and adaptive immune cells play a crucial role in mediating immune surveillance and controlling tumor growth. Here, we discuss the different subsets of immune cells and how they contribute to an immunosuppressive TME of HNSCCs. We also briefly summarize recent advances in immunotherapeutic approaches for HNSCC treatment. A better understanding of the multiple factors that play pivotal roles in HNSCC tumorigenesis and tumor progression may help define novel targets to develop more effective immunotherapies for patients with HNSCC.
Collapse
Affiliation(s)
- Samantha M Y Chen
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Alexandra L Krinsky
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rachel A Woolaver
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xiaoguang Wang
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Zhangguo Chen
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jing H Wang
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|