1
|
Stewart DC, Brisson BK, Dekky B, Berger AC, Yen W, Mauldin EA, Loebel C, Gillette D, Assenmacher CA, Quincey C, Stefanovski D, Cristofanilli M, Cukierman E, Burdick JA, Borges VF, Volk SW. Prognostic and therapeutic implications of tumor-restrictive type III collagen in the breast cancer microenvironment. NPJ Breast Cancer 2024; 10:86. [PMID: 39358397 PMCID: PMC11447064 DOI: 10.1038/s41523-024-00690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Collagen plays a critical role in regulating breast cancer progression and therapeutic resistance. An improved understanding of both the features and drivers of tumor-permissive and -restrictive collagen matrices are critical to improve prognostication and develop more effective therapeutic strategies. In this study, using a combination of in vitro, in vivo and bioinformatic experiments, we show that type III collagen (Col3) plays a tumor-restrictive role in human breast cancer. We demonstrate that Col3-deficient, human fibroblasts produce tumor-permissive collagen matrices that drive cell proliferation and suppress apoptosis in non-invasive and invasive breast cancer cell lines. In human triple-negative breast cancer biopsy samples, we demonstrate elevated deposition of Col3 relative to type I collagen (Col1) in non-invasive compared to invasive regions. Similarly, bioinformatics analysis of over 1000 breast cancer patient biopsies from The Cancer Genome Atlas BRCA cohort revealed that patients with higher Col3:Col1 bulk tumor expression had improved overall, disease-free, and progression-free survival relative to those with higher Col1:Col3 expression. Using an established 3D culture model, we show that Col3 increases spheroid formation and induces the formation of lumen-like structures that resemble non-neoplastic mammary acini. Finally, our in vivo study shows co-injection of murine breast cancer cells (4T1) with rhCol3-supplemented hydrogels limits tumor growth and decreases pulmonary metastatic burden compared to controls. Taken together, these data collectively support a tumor-suppressive role for Col3 in human breast cancer and suggest that strategies that increase Col3 may provide a safe and effective therapeutic modality to limit recurrence in breast cancer patients.
Collapse
Affiliation(s)
- Daniel C Stewart
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Becky K Brisson
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bassil Dekky
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashton C Berger
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William Yen
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudia Loebel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Deborah Gillette
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corisa Quincey
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Darko Stefanovski
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jason A Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Virginia F Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan W Volk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Gao L, Yan SB, Jiang FC, Huang ZG, Li DM, Tang YL, Luo JY, Chen G, Wei DM. Identification of ZIC2 as a Potential Biomarker Linked with the Clinical Progression and Immune Infiltration of Oral Cancer: A Multicenter Study. Int J Genomics 2024; 2024:3256694. [PMID: 38304730 PMCID: PMC10830925 DOI: 10.1155/2024/3256694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/15/2023] [Accepted: 11/24/2023] [Indexed: 02/03/2024] Open
Abstract
Aim To investigate the specific expression profile, clinicopathological significance and mechanism of Zic family member 2 (ZIC2) in oral cancer were unclear. Patients and Methods. We explored the expression pattern and clinicopathological significance of ZIC2 in oral cancer through performing in-house tissue microarray and integrated analysis global RNA-seq and microarrays containing large samples. The molecular basis of ZIC2 in oral cancer was further investigated in the aspects of transcription network and immune correlations. We also performed in vitro experiments and calculated drug sensitivity of oral cancer with different ZIC2 expression levels in response to hundreds of compounds. Results All data unanimously proved the significant overexpression of ZIC2 in oral cancer. The upregulation of ZIC2 was remarkably associated with the malignant clinical progression of oral cancer. ZIC2 was predicted to be targeted by miRNAs such as miR-3140, miR-4999, and miR-1322. The infiltration level of CD8+ T and central memory cells was positively related to the overexpression of ZIC2. Oral cancer patients with higher ZIC2 expression showed higher drug sensitivity to two compounds including AZD8186 and ERK_2240. Conclusions We demonstrated the upregulation of ZIC2 in oral cancer and its promoting effect on the clinical advancement of oral cancer. The potential clinical value of ZIC2 in oral cancer deserves attention.
Collapse
Affiliation(s)
- Li Gao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Shi-Bai Yan
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Fang-Cheng Jiang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Dong-Ming Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Yu-Lu Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Jia-Yuan Luo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Dan-Ming Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| |
Collapse
|
3
|
Brisson BK, Dekky B, Berger AC, Mauldin EA, Loebel C, Yen W, Stewart DC, Gillette D, Assenmacher CA, Cukierman E, Burdick JA, Borges VF, Volk SW. Tumor-restrictive type III collagen in the breast cancer microenvironment: prognostic and therapeutic implications. RESEARCH SQUARE 2023:rs.3.rs-2631314. [PMID: 37090621 PMCID: PMC10120781 DOI: 10.21203/rs.3.rs-2631314/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Collagen plays a critical role in regulating breast cancer progression and therapeutic resistance. An improved understanding of both the features and drivers of tumor-permissive and -restrictive collagen matrices are critical to improve prognostication and develop more effective therapeutic strategies. In this study, using a combination of in vitro, in vivo and in silico experiments, we show that type III collagen (Col3) plays a tumor-restrictive role in human breast cancer. We demonstrate that Col3-deficient, human fibroblasts produce tumor-permissive collagen matrices that drive cell proliferation and suppress apoptosis in noninvasive and invasive breast cancer cell lines. In human TNBC biopsy samples, we demonstrate elevated deposition of Col3 relative to type I collagen (Col1) in noninvasive compared to invasive regions. Similarly, in silico analyses of over 1000 breast cancer patient biopsies from The Cancer Genome Atlas BRCA cohort revealed that patients with higher Col3:Col1 bulk tumor expression had improved overall, disease-free and progression-free survival relative to those with higher Col1:Col3 expression. Using an established 3D culture model, we show that Col3 increases spheroid formation and induces formation of lumen-like structures that resemble non-neoplastic mammary acini. Finally, our in vivo study shows co-injection of murine breast cancer cells (4T1) with rhCol3-supplemented hydrogels limits tumor growth and decreases pulmonary metastatic burden compared to controls. Taken together, these data collectively support a tumor-suppressive role for Col3 in human breast cancer and suggest that strategies that increase Col3 may provide a safe and effective modality to limit recurrence in breast cancer patients.
Collapse
Affiliation(s)
- Becky K. Brisson
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bassil Dekky
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ashton C. Berger
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth A. Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Claudia Loebel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - William Yen
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel C. Stewart
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Deborah Gillette
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jason A. Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Virginia F. Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado Cancer Center, Aurora, Colorado, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan W. Volk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Collagen Remodeling along Cancer Progression Providing a Novel Opportunity for Cancer Diagnosis and Treatment. Int J Mol Sci 2022; 23:ijms231810509. [PMID: 36142424 PMCID: PMC9502421 DOI: 10.3390/ijms231810509] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a significant factor in cancer progression. Collagens, as the main component of the ECM, are greatly remodeled alongside cancer development. More and more studies have confirmed that collagens changed from a barrier to providing assistance in cancer development. In this course, collagens cause remodeling alongside cancer progression, which in turn, promotes cancer development. The interaction between collagens and tumor cells is complex with biochemical and mechanical signals intervention through activating diverse signal pathways. As the mechanism gradually clears, it becomes a new target to find opportunities to diagnose and treat cancer. In this review, we investigated the process of collagen remodeling in cancer progression and discussed the interaction between collagens and cancer cells. Several typical effects associated with collagens were highlighted in the review, such as fibrillation in precancerous lesions, enhancing ECM stiffness, promoting angiogenesis, and guiding invasion. Then, the values of cancer diagnosis and prognosis were focused on. It is worth noting that several generated fragments in serum were reported to be able to be biomarkers for cancer diagnosis and prognosis, which is beneficial for clinic detection. At a glance, a variety of reported biomarkers were summarized. Many collagen-associated targets and drugs have been reported for cancer treatment in recent years. The new targets and related drugs were discussed in the review. The mass data were collected and classified by mechanism. Overall, the interaction of collagens and tumor cells is complicated, in which the mechanisms are not completely clear. A lot of collagen-associated biomarkers are excavated for cancer diagnosis. However, new therapeutic targets and related drugs are almost in clinical trials, with merely a few in clinical applications. So, more efforts are needed in collagens-associated studies and drug development for cancer research and treatment.
Collapse
|
5
|
Wang C, Wang Y, Fu Z, Huang W, Yu Z, Wang J, Zheng K, Zhang S, Li S, Chen J. MiR-29b-3p Inhibits Migration and Invasion of Papillary Thyroid Carcinoma by Downregulating COL1A1 and COL5A1. Front Oncol 2022; 12:837581. [PMID: 35530352 PMCID: PMC9075584 DOI: 10.3389/fonc.2022.837581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate genetic expression and are also vital for tumor initiation and development. MiR-29b-3p was found to be involved in regulating various biological processes of tumors, including tumor cell proliferation, metastasis, and apoptosis inhibition; however, the biofunction and molecule-level mechanisms of miR-29b-3p inpapillary thyroid carcinoma (PTC) remain unclear. Methods The expression of miR-29b-3p in PTC samples was tested via qRT-PCR. Cellular proliferation was analyzed by CCK-8 and EdU assays, and cellular migratory and invasive abilities were assessed utilizing wound-healing and Transwell assays. In addition, protein expressions of COL1A1, COL5A1, E-cadherin, N-cadherin, Snail, and Vimentin were identified via Western blot (WB) assay. Bioinformatics, qRT-PCR, WB, and dual luciferase reporter assays were completed to identify whether miR-29b-3p targeted COL1A1 and COL5A1. In addition, our team explored the treatment effects of miR-29b-3p on a murine heterograft model. Results Our findings revealed that miR-29b-3p proved much more regulated downward in PTC tissue specimens than in adjacent non-cancerous tissues. Meanwhile, decreased expression of miR-29b-3p was strongly related to the TNM stage of PTC patients (p<0.001), while overexpression of miR-29b-3p in PTC cells suppressed cellular migration, invasion, proliferation, and EMT. Conversely, silencing miR-29b-3p yielded the opposite effect. COL1A1 and COL5A1 were affirmed as the target of miR-29b-3p. Additionally, the COL1A1 and COL5A1 were highly expressed in PTC tumor samples than in contrast to neighboring healthy samples. Functional assays revealed that overexpression of COL1A1 or COL5A1 reversed the suppressive role of miR-29b-3p in migration, invasion, and EMT of PTC cells. Finally, miR-29b-3p agomir treatment dramatically inhibited Xenograft tumor growth in the animal model. Conclusions These findings document that miR-29b-3p inhibited PTC cells invasion and metastasis by targeting COL1A1 and COL5A1; this study also sparks new ideas for risk assessment and miRNA replacement therapy in PTC.
Collapse
Affiliation(s)
- Congjun Wang
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Clinical Research Lab, Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Ye Wang
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Clinical Research Lab, Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Zhao Fu
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Clinical Research Lab, Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Weijia Huang
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Clinical Research Lab, Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Zhu Yu
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Clinical Research Lab, Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Jiancheng Wang
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Clinical Research Lab, Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Kaitian Zheng
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Clinical Research Lab, Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Siwen Zhang
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Clinical Research Lab, Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Shen Li
- Department of Gastrointestinal, Hernia and Enterofistula Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Junqiang Chen
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Clinical Research Lab, Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
- *Correspondence: Junqiang Chen,
| |
Collapse
|
6
|
The Hypoxia-Related Gene COL5A1 Is a Prognostic and Immunological Biomarker for Multiple Human Tumors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6419695. [PMID: 35082969 PMCID: PMC8786464 DOI: 10.1155/2022/6419695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 01/19/2023]
Abstract
Background Collagen type V alpha 1 chain (COL5A1) is a hypoxia-related gene (a collagen family protein) and participates in the formation of the extracellular matrix. Although some evidence supports a significant role for COL5A1 in the progression of several cancers, a pan-cancer analysis of COL5A1 is not currently available. Herein, we aimed to assess the prognostic value of COL5A1 in 33 human cancers and to investigate its underlying immunological function. Methods Through multiple bioinformatics methods, we analyzed the data from Oncomine, TCGA, CCLE, HPA, DNMIVD, and cBioPortal database to explore the potential underlying carcinogenic effect of COL5A1, including the relevance of COL5A1 to the outcome, DNA methylation, tumor microenvironment, immune cells infiltration, and drug sensitivity in 33 human cancers. The effects of COL5A1 on glioma cell proliferation, migration, and invasion were verified in cellular experiments. Results Our findings indicated that COL5A1 was expressed at high levels in 13 cancers and was negatively related to the prognosis of 11 cancers. Additionally, COL5A1 was coexpressed with genes encoding the major histocompatibility complex, immune activators, immune suppressors, chemokines, chemokine receptors, mismatch repair genes, and immune checkpoints. We also identified different roles for COL5A1 in the immunocyte infiltration in different cancers. The correlation between COL5A1 and drug sensitivity was found in several cancers. COL5A1 potentially influenced the tumor progression through immune-related pathways, negative regulation of immune system processes, chemokine signaling pathways, JAK-STAT pathways, T cell receptor pathways, lymphocyte migration, and antigen processing and presentation, among other processes. Conclusions Based on our study, COL5A1 may be employed as a prognostic marker in different malignancies because of its impact on tumorigenesis and immune cell infiltration and have implications for cancer immune checkpoint inhibitors and chemotherapy.
Collapse
|
7
|
Type V collagen alpha 1 chain promotes the malignancy of glioblastoma through PPRC1-ESM1 axis activation and extracellular matrix remodeling. Cell Death Discov 2021; 7:313. [PMID: 34702798 PMCID: PMC8548600 DOI: 10.1038/s41420-021-00661-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/17/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is a fatal cancer. Existing therapies do not have significant efficacy for GBM patients. Previous studies have shown that the collagen family is involved in the regulation of the extracellular environment of cancer cells, and these conditions could become an important factor for effective treatment. Therefore, we screened various collagen types and observed that the type V collagen α1 chain (COL5A1) gene plays a pivotal role in GBM. We further examined whether the overexpression of COL5A1 is common in mesenchymal subtypes and is related to the survival rate of GBM patients through several in silico cohorts. In addition, our cohort also showed a consistent trend in COL5A1 protein levels. Most importantly, we validated the cell mobility, metastatic ability and actin polymerization status caused by COL5A1 with two-way models. Based on these results, we established a transcriptomics dataset based on COL5A1. Moreover, PPRC1, GK and ESM1 were predicted by ingenuity pathway analysis (IPA) to be transcription factors or to participate downstream. We investigated the involvement of COL5A1 in extracellular remodeling and the regulation of actin filaments in the metastasis of GBM. Our results indicate that the COL5A1-PPRC1-ESM1 axis may represent a novel therapeutic target in GBM.
Collapse
|
8
|
Gao Y, Lyu Q, Luo P, Li M, Zhou R, Zhang J, Lyu Q. Applications of Machine Learning to Predict Cisplatin Resistance in Lung Cancer. Int J Gen Med 2021; 14:5911-5925. [PMID: 34588799 PMCID: PMC8473573 DOI: 10.2147/ijgm.s329644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Lung cancer, mainly lung adenocarcinoma, lung squamous cell carcinoma and small cell lung cancer, has the highest incidence and cancer-related mortality worldwide. Platinum-based chemotherapy plays an important role in the treatment of various lung cancer subtypes, but not all patients benefit from this treatment regimen; thus, it is worth identifying lung cancer patients who are resistant or sensitive to platinum-based therapy. Methods The drug response and sequencing data of 170 lung cancer cell lines were downloaded from the Genomics of Drug Sensitivity in Cancer (GDSC) database, and support vector machines (SVMs) and beam search were used to select an optimal gene panel that can predict the sensitivity of cell lines to cisplatin. Then, we used available cell line data to explore the potential mechanisms. Results In this work, the drug response and sequencing data of 170 lung cancer cell lines were downloaded from the GDSC database, and SVMs and beam search were used to screen a panel of genes related to lung cancer cell line resistance to cisplatin. A final panel of nine genes (PLXNC1, KIAA0649, SPTBN4, SLC14A2, F13A1, COL5A1, SCN2A, PLEC, and ALMS1) was identified, and achieved an area under the curve (AUC) of 0.873 ± 0.004. The natural logarithm of the half maximal inhibitory concentration (lnIC50) values of the mutant-type (panel-MT) group was significantly higher than that of the wild-type (panel-WT) group, regardless of the lung cancer subtype. The differentially expressed pathways between the two groups may explain this difference. Conclusion In this study, we found that a panel of nine genes can accurately predict sensitivity to cisplatin, which may provide individualized treatment recommendations to improve the prognosis of patients with lung cancer.
Collapse
Affiliation(s)
- Yanan Gao
- Department of Radiotherapy, Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qiong Lyu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Mujiao Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, People's Republic of China
| | - Rui Zhou
- School of Biomedical Engineering, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qingwen Lyu
- Department of Information, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Yao J, Li R, Liu X, Zhou X, Li J, Liu T, Huo C, Qu Y. Prognostic implication of glycolysis related gene signature in non-small cell lung cancer. J Cancer 2021; 12:885-898. [PMID: 33403045 PMCID: PMC7778529 DOI: 10.7150/jca.50274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/24/2020] [Indexed: 12/24/2022] Open
Abstract
Abnormal glycolysis is one of the hallmarks of cancer and plays an important role in its development. This study was devoted to identify glycolysis related genes as prognostic biomarkers for non-small cell lung cancer (NSCLC). The mRNA expression profile and clinical follow-up data were obtained using The Cancer Genome Atlas (TCGA) database. The validation set was obtained by bootstrap method of random repeated sampling. A total of 200 glycolysis-related genes were obtained from Gene Set Enrichment Analysis (GSEA) and 46 genes were significantly associated with overall survival (OS). Five genes (PKP2, LDHA, HMMR, COL5A1 and B3GNT3) were eventually identified to calculate risk score of NSCLC patients. The univariate and multivariate Cox regression analysis indicated that the risk score was an independent prognostic factor (training set: HR=2.126, 95% CI [1.605, 2.815], p<0.001; validation set: HR=2.298, 95%CI [1.450, 3.640], p<0.001). Patients assigned to the high-risk group were associated with poor OS compared with patients in the low-risk group (training set: P=7.946e-06; validation set: P=6.368e-07). Receiver operating characteristic (ROC) curve and stratification analysis also demonstrated the potential prognostic performance. In conclusion, we constructed a novel glycolysis related risk signature which might contribute to predicting the prognosis of NSCLC.
Collapse
Affiliation(s)
- Jie Yao
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Rui Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiao Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xijia Zhou
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jianping Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tingting Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chen Huo
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yiqing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
10
|
Liu L, Cai L, Liu C, Yu S, Li B, Pan L, Zhao J, Zhao Y, Li W, Yan X. Construction and Validation of a Novel Glycometabolism-Related Gene Signature Predicting Survival in Patients With Ovarian Cancer. Front Genet 2020; 11:585259. [PMID: 33281878 PMCID: PMC7689371 DOI: 10.3389/fgene.2020.585259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022] Open
Abstract
Among all fatal gynecological malignant tumors, ovarian cancer has the highest mortality rate. The purpose of this study was to develop a stable and personalized glycometabolism-related prognostic signature to predict the overall survival of ovarian cancer patients. The gene expression profiles and clinical information of ovarian cancer patients were derived from four public GEO datasets, which were divided into training and testing cohorts. Glycometabolism-related genes significantly associated with prognosis were selected. A risk score model was established and validated to evaluate its predictive value. We found 5 genes significantly related to prognosis and established a five-mRNA signature. The five-mRNA signature significantly divided patients into a low-risk group and a high-risk group in the training set and validation set. Survival analysis showed that high risk scores obtained by the model were significantly correlated with adverse survival outcomes and could be regarded as an independent predictor for patients with ovarian cancer. In addition, the five-mRNA signature can predict the overall survival of ovarian cancer patients in different subgroups. In summary, we successfully constructed a model that can predict the prognosis of patients with ovarian cancer, which provides new insights into postoperative treatment strategies, promotes individualized therapy, and provides potential new targets for immunotherapy.
Collapse
Affiliation(s)
- Lixiao Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luya Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chuan Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Shanshan Yu
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingxin Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luyao Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinduo Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ye Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenfeng Li
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaojian Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Bourgot I, Primac I, Louis T, Noël A, Maquoi E. Reciprocal Interplay Between Fibrillar Collagens and Collagen-Binding Integrins: Implications in Cancer Progression and Metastasis. Front Oncol 2020; 10:1488. [PMID: 33014790 PMCID: PMC7461916 DOI: 10.3389/fonc.2020.01488] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cancers are complex ecosystems composed of malignant cells embedded in an intricate microenvironment made of different non-transformed cell types and extracellular matrix (ECM) components. The tumor microenvironment is governed by constantly evolving cell-cell and cell-ECM interactions, which are now recognized as key actors in the genesis, progression and treatment of cancer lesions. The ECM is composed of a multitude of fibrous proteins, matricellular-associated proteins, and proteoglycans. This complex structure plays critical roles in cancer progression: it functions as the scaffold for tissues organization and provides biochemical and biomechanical signals that regulate key cancer hallmarks including cell growth, survival, migration, differentiation, angiogenesis, and immune response. Cells sense the biochemical and mechanical properties of the ECM through specialized transmembrane receptors that include integrins, discoidin domain receptors, and syndecans. Advanced stages of several carcinomas are characterized by a desmoplastic reaction characterized by an extensive deposition of fibrillar collagens in the microenvironment. This compact network of fibrillar collagens promotes cancer progression and metastasis, and is associated with low survival rates for cancer patients. In this review, we highlight how fibrillar collagens and their corresponding integrin receptors are modulated during cancer progression. We describe how the deposition and alignment of collagen fibers influence the tumor microenvironment and how fibrillar collagen-binding integrins expressed by cancer and stromal cells critically contribute in cancer hallmarks.
Collapse
Affiliation(s)
| | | | | | | | - Erik Maquoi
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| |
Collapse
|
12
|
Li P, Cao J, Li J, Yao Z, Han D, Ying L, Wang Z, Tian J. Identification of prognostic biomarkers associated with stromal cell infiltration in muscle-invasive bladder cancer by bioinformatics analyses. Cancer Med 2020; 9:7253-7267. [PMID: 32786144 PMCID: PMC7541158 DOI: 10.1002/cam4.3372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/05/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Muscle-invasive bladder cancer (MIBC) is one of the common malignant tumors. Patients with MIBC still have high tumor recurrence and progression rates after surgery. Bioinformatics analysis of stromal infiltration-related genes in the tumor microenvironment (TME) of MIBC patients was performed in this study to determine the major stromal cells types and biomarkers for their progression and poor prognosis. The ESTIMATE algorithm was applied to evaluate the stromal score and immune score of samples from MIBC patients in The Cancer Genome Atlas (TCGA) and found that stromal score was closely related to the clinical characteristics of the patients. The Gene Set Enrichment Analysis (GSEA) further revealed that stromal cells were involved in biological processes such as activation of leukocytes and positive regulation of cell migration during MIBC progression, as well as PI3K-Akt, MAPK, and Rap1 signaling pathways. Five hub genes related to prognosis, including ACTA2, COL5A1, DCN, LUM, and PRRX1 were identified by the Weighted Gene Co-Expression Network Analysis (WGCNA), Protein-Protein Interaction (PPI), survival analysis, and Oncomine, Gene Expression Omnibus (GEO) database validation. Besides, we identified five stromal cell types associated with overall survival time, among which chondrocytes and fibroblasts were identified as the major stromal cell types through correlation analysis. Finally, the Receiver Operating Characteristic (ROC) curve and immunohistochemistry were used to verify the diagnostic value and expression of hub genes in different invasive tumors. In summary, we investigated the biological behavior of stromal cells in the TME of MIBC to promote tumor progression obtained hub genes associated with progression and poor prognosis and identified the main stromal cells types in the TME.
Collapse
Affiliation(s)
- Pan Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China.,Clinical Center of Gansu Province for Nephron-urology, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jinlong Cao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China.,Clinical Center of Gansu Province for Nephron-urology, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jianpeng Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China.,Clinical Center of Gansu Province for Nephron-urology, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhiqiang Yao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China.,Clinical Center of Gansu Province for Nephron-urology, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dali Han
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China.,Clinical Center of Gansu Province for Nephron-urology, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Lijun Ying
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China.,Clinical Center of Gansu Province for Nephron-urology, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhiping Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China.,Clinical Center of Gansu Province for Nephron-urology, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Junqiang Tian
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China.,Clinical Center of Gansu Province for Nephron-urology, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Zheng HP, Huang ZG, He RQ, Lu HP, Dang YW, Lin P, Wen DY, Qin YY, Luo B, Li XJ, Mo WJ, Yang H, He Y, Chen G. Integrated assessment of CDK1 upregulation in thyroid cancer. Am J Transl Res 2019; 11:7233-7254. [PMID: 31934275 PMCID: PMC6943461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Cyclin-dependent kinase 1 (CDK1) has a unique role in cell cycle regulation, as it is crucial for cell cycle progression and cell division. The aim of the present study was to use a combination of various detection methods to examine the expression and clinical significance of CDK1 in thyroid cancer (THCA). We used in-house tissue microarrays, immunohistochemistry, public RNA-sequencing, gene microarrays, and meta-analyses to conduct a comprehensive analysis of the role of CDK1 in the occurrence and development of THCA. CDK1 protein expression was notably higher in THCA tissues than in non-cancer tissues as evidenced by the in-house tissue microarrays. The expression of CDK1 protein was also significantly higher in pathologic T3-T4 than in T1-T2 samples. The pooled standardized mean difference (SMD) for CDK1 was 0.71 (95% CI, 0.46-0.95) including a total of 931 THCA and 585 non-cancerous thyroid tissue samples. An aggregation of the immunohistochemistry results and the RNA-sequencing/microarray findings gave a pooled SMD for CDK1 expression of 2.13 (95% CI, 1.30-2.96). The final area under curve (AUC) for the summarized receiver operating characteristic (sROC) was 0.7941 using all 1102 cases of THCA and 672 cases of controls. KEGG analysis with the co-expressed genes of CDK1 in THCA demonstrated the top enriched pathways to be the cell cycle, thyroid hormone synthesis, autoimmune thyroid disease, etc. In summary, we reveal the overexpression of CDK1 in THCA based on multiple detection methods that combine independent cohorts. However, further studies are required to elucidate the molecular mechanisms of CDK1 that promotes the biological aggressiveness of THCA cells.
Collapse
Affiliation(s)
- Hai-Ping Zheng
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hui-Ping Lu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Peng Lin
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Dong-Yue Wen
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yong-Ying Qin
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Bin Luo
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Jiao Li
- Department of Positron Emission Tomography Computed Tomography, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Wei-Jia Mo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hong Yang
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yun He
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
14
|
Li C, Shao T, Bao G, Gao Z, Zhang Y, Ding H, Zhang W, Liu F, Guo C. Identification of potential core genes in metastatic renal cell carcinoma using bioinformatics analysis. Am J Transl Res 2019; 11:6812-6825. [PMID: 31814889 PMCID: PMC6895538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Most cases of mRCC without an early finding are not candidates for curative therapies, which may be one of the reasons for the poor patient prognosis. Therefore, candidate markers to diagnose the disease and treatment with high efficiency are urgently demanded. Three datasets of mRNA microarray have been assessed to discover DEGs between tissues from metastatic RCC and RCC. 111 DEGs in total were identified according to the expression profile result of genes in the database of GEO. Enrichment analyses for GO and KEGG have been conducted to reveal the interacting activities in the DEGs. A network of PPI has been established to reveal the interconnection among the DEGs, and we selected 10 hub genes. Subsequently, the disease-free survival rate and total survival rate analysis for the hub genes have been carried out with the method of Kaplan-Meier curve. RCC patients with CDH11, COL3A1, COL5A1, COL5A2, COL6A3 and COL11A1 alteration showed worse overall survival. Nonetheless, RCC patients with CDH11, COL3A1, COL5A1, COL5A2 and COL11A1 alteration showed worse disease-free survival. In the Jones Renal dataset, mRNA levels of 10 hub genes were associated with metastasis, and the gene expression level in patients with mRCC was higher than that in patients without metastasis. COL5A1, COL6A3 and COL11A1 expression levels were remarkably related to RCC patient survival rate using UALCAN. COL5A1, COL6A3 and COL11A1 were positively correlated with each other in RCC. These genes have been recognized as genes with clinical relevance, revealing that they might have important roles in carcinogenesis or development of mRCC.
Collapse
Affiliation(s)
- Chunsheng Li
- Department of Urology, Affiliated Hospital of Chifeng UniversityChifeng 024000, China
- Urology Research Center, Chifeng UniversityChifeng 024000, China
| | - Ting Shao
- Department of Gynecology, Affiliated Hospital of Chifeng UniversityChifeng 024000, China
| | - Guochang Bao
- Department of Urology, Affiliated Hospital of Chifeng UniversityChifeng 024000, China
- Urology Research Center, Chifeng UniversityChifeng 024000, China
| | - Zhiming Gao
- Department of Urology, Affiliated Hospital of Chifeng UniversityChifeng 024000, China
- Urology Research Center, Chifeng UniversityChifeng 024000, China
| | - Yinglang Zhang
- Department of Urology, Affiliated Hospital of Chifeng UniversityChifeng 024000, China
| | - Honglin Ding
- Department of Urology, Affiliated Hospital of Chifeng UniversityChifeng 024000, China
| | - Wei Zhang
- Department of Urology, Affiliated Hospital of Chifeng UniversityChifeng 024000, China
| | - Fengjun Liu
- Department of Urology, Affiliated Hospital of Chifeng UniversityChifeng 024000, China
| | - Changgang Guo
- Department of Urology, Affiliated Hospital of Chifeng UniversityChifeng 024000, China
- Urology Research Center, Chifeng UniversityChifeng 024000, China
| |
Collapse
|