1
|
Yaghoubi Naei V, Bordhan P, Mirakhorli F, Khorrami M, Shrestha J, Nazari H, Kulasinghe A, Ebrahimi Warkiani M. Advances in novel strategies for isolation, characterization, and analysis of CTCs and ctDNA. Ther Adv Med Oncol 2023; 15:17588359231192401. [PMID: 37692363 PMCID: PMC10486235 DOI: 10.1177/17588359231192401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/19/2023] [Indexed: 09/12/2023] Open
Abstract
Over the past decade, the detection and analysis of liquid biopsy biomarkers such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) have advanced significantly. They have received recognition for their clinical usefulness in detecting cancer at an early stage, monitoring disease, and evaluating treatment response. The emergence of liquid biopsy has been a helpful development, as it offers a minimally invasive, rapid, real-time monitoring, and possible alternative to traditional tissue biopsies. In resource-limited settings, the ideal platform for liquid biopsy should not only extract more CTCs or ctDNA from a minimal sample volume but also accurately represent the molecular heterogeneity of the patient's disease. This review covers novel strategies and advancements in CTC and ctDNA-based liquid biopsy platforms, including microfluidic applications and comprehensive analysis of molecular complexity. We discuss these systems' operational principles and performance efficiencies, as well as future opportunities and challenges for their implementation in clinical settings. In addition, we emphasize the importance of integrated platforms that incorporate machine learning and artificial intelligence in accurate liquid biopsy detection systems, which can greatly improve cancer management and enable precision diagnostics.
Collapse
Affiliation(s)
- Vahid Yaghoubi Naei
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Pritam Bordhan
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
- Faculty of Science, Institute for Biomedical Materials & Devices, University of Technology Sydney, Australia
| | - Fatemeh Mirakhorli
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Arutha Kulasinghe
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, 1, Broadway, Ultimo New South Wales 2007, Australia
| |
Collapse
|
2
|
Imamura J, Ganguly S, Muskara A, Liao RS, Nguyen JK, Weight C, Wee CE, Gupta S, Mian OY. Lineage plasticity and treatment resistance in prostate cancer: the intersection of genetics, epigenetics, and evolution. Front Endocrinol (Lausanne) 2023; 14:1191311. [PMID: 37455903 PMCID: PMC10349394 DOI: 10.3389/fendo.2023.1191311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Androgen deprivation therapy is a cornerstone of treatment for advanced prostate cancer, and the development of castrate-resistant prostate cancer (CRPC) is the primary cause of prostate cancer-related mortality. While CRPC typically develops through a gain in androgen receptor (AR) signaling, a subset of CRPC will lose reliance on the AR. This process involves genetic, epigenetic, and hormonal changes that promote cellular plasticity, leading to AR-indifferent disease, with neuroendocrine prostate cancer (NEPC) being the quintessential example. NEPC is enriched following treatment with second-generation anti-androgens and exhibits resistance to endocrine therapy. Loss of RB1, TP53, and PTEN expression and MYCN and AURKA amplification appear to be key drivers for NEPC differentiation. Epigenetic modifications also play an important role in the transition to a neuroendocrine phenotype. DNA methylation of specific gene promoters can regulate lineage commitment and differentiation. Histone methylation can suppress AR expression and promote neuroendocrine-specific gene expression. Emerging data suggest that EZH2 is a key regulator of this epigenetic rewiring. Several mechanisms drive AR-dependent castration resistance, notably AR splice variant expression, expression of the adrenal-permissive 3βHSD1 allele, and glucocorticoid receptor expression. Aberrant epigenetic regulation also promotes radioresistance by altering the expression of DNA repair- and cell cycle-related genes. Novel therapies are currently being developed to target these diverse genetic, epigenetic, and hormonal mechanisms promoting lineage plasticity-driven NEPC.
Collapse
Affiliation(s)
- Jarrell Imamura
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Shinjini Ganguly
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andrew Muskara
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ross S. Liao
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jane K. Nguyen
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Christopher Weight
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Christopher E. Wee
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Shilpa Gupta
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Omar Y. Mian
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
3
|
Wang X, Zhou Y, Wang C, Zhao Y, Cheng Y, Yu S, Li X, Zhang W, Zhang Y, Quan H. HCV Core protein represses DKK3 expression via epigenetic silencing and activates the Wnt/β-catenin signaling pathway during the progression of HCC. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:1998-2009. [PMID: 35768685 DOI: 10.1007/s12094-022-02859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
The Wnt/β-catenin signaling pathway is frequently activated in hepatocellular carcinoma (HCC). A number of studies have focused on the aberrant hypermethylation of the DKK family proteins and its role in regulating the activation of specific signaling pathways. However, the exact way by which DKK regulates the signaling pathway caused by Core protein of HCV has not been reported. In the present study, we evaluated the expression level of DKK and its aberrant promoter methylation to investigate the involvement of epigenetic regulation in hepatoma cell lines. The transcription and protein expression of DKK1 was significantly increased, whereas the transcription and protein expression levels of DKK2, DKK3, and DKK4 were significantly decreased following overexpression of Core protein. Pyrosequencing indicated that hypermethylation of DKK3 was increased. This was associated with increased expression of Dnmt1. The investigation of the molecular mechanism indicated that HCV Core protein interacted with Dnmt1, which combined with the promoter of DKK3, leading to methylation of DKK3. Functional studies indicated that Core protein promoted the growth, migration and invasion of cancer cells. However, upregulation of the expression of DKK3 and/or the knockdown of the expression of Dnmt1 inhibited the growth, migration and invasion of cancer cells. Taken together, the data indicated that epigenetic silencing of DKK3 caused by Dnmt1 activated the Wnt/β-catenin pathway in HCV Core-mediated HCC. Therefore, DKK3 may be a potential diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yun Zhou
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Chunfu Wang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yanyan Zhao
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yan Cheng
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Suhuai Yu
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Xiaofeng Li
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Wenjing Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Ying Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Huiqin Quan
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
4
|
Asare A, Yao H, Lara OD, Wang Y, Zhang L, Sood AK. Race-associated molecular changes in gynecologic malignancies. CANCER RESEARCH COMMUNICATIONS 2022; 2:99-109. [PMID: 35992327 PMCID: PMC9390975 DOI: 10.1158/2767-9764.crc-21-0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The difference in cancer morbidity and mortality between individuals of different racial groups is complex. Health disparities provide a framework to explore potential connections between poor outcomes and individuals of different racial backgrounds. This study identifies genomic changes in African-American patients with gynecologic malignancies, a population with well-established disparities in outcomes. Our data explore whether social health disparities might mediate interactions between the environment and tumor epigenomes and genomes that can be identified. Using The Cancer Genetic Ancestry Atlas, which encodes data from The Cancer Genome Atlas by ancestry and allows for systematic analyses of sequencing data by racial group, we performed large-scale, comparative analyses to identify novel targets with alterations in methylation, transcript, and microRNA expression between tumors from women of European American or African American racial groups across all gynecologic malignancies. We identify novel discrete genomic changes in these complex malignancies and suggest a framework for identifying novel therapeutic targets for future investigation.
Collapse
Affiliation(s)
- Amma Asare
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Hui Yao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Olivia D. Lara
- Department of Obstetrics and Gynecology, NYU Langone Health, New York
| | - Ying Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anil K. Sood
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Corresponding Author: Anil K. Sood, Department of Gynecologic Oncology and Reproductive Medicine, Unit 1362, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030. Phone: 713-745-5266; E-mail:
| |
Collapse
|
5
|
Hamadneh L, Abu-Irmaileh B, Al-Majawleh M, Bustanji Y, Jarrar Y, Al-Qirim T. Doxorubicin-paclitaxel sequential treatment: insights of DNA methylation and gene expression changes of luminal A and triple negative breast cancer cell lines. Mol Cell Biochem 2021; 476:3647-3654. [PMID: 34050450 DOI: 10.1007/s11010-021-04191-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 05/22/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is one of the significant causes of death among women diagnosed with cancer worldwide. Even though several chemotherapy combinations are still the primary treatment of breast cancer, unsuccessful treatments, and poor prognostic outcomes are still being reported. DNA methylation and gene expression changes among two breast cancer cell lines representing luminal A (MCF-7) and triple-negative (MDA-MB-231) cancers were determined after sequential combination treatment of doxorubicin and paclitaxel and analyzed using Ingenuity Pathway Analysis. Promoter methylation changes were seen in different treated MCF-7 cells and accompanied by changes in the gene expression of CCNA1 and PTGS2. In MDA-MB-231 cells, the hypomethylation of ESR1 was not accompanied by an increase in its gene expression in any treated cells. The hypomethylation of GSTP1 and MGMT was accompanied by an increase in gene expression levels in the group treated with doxorubicin only. Also, significant downregulation of several genes like MUC1 and MKI67 in MCF-7 cells treated with doxorubicin showed much lower gene expression (- 37.63, - 10.88 folds) when compared with cells treated with paclitaxel (- 2.47, - 2.05 folds) or the combination treatment (- 18.99, - 2.81 folds), respectively. On the other hand, a synergistic effect on MMP9 gene expression was significantly seen in MDA-MB-231 cells treated with the combination (- 9.99 folds) in comparison with the cells treated with doxorubicin (- 3.62 folds) or paclitaxel (1.75 folds) alone. Chemotherapy combinations do not always augment the molecular changes seen in each drug alone, and these changes could be utilized as treatment response markers.
Collapse
Affiliation(s)
- Lama Hamadneh
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan.
| | - Bashaer Abu-Irmaileh
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, 11942, Jordan
| | - May Al-Majawleh
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Yasser Bustanji
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, 11942, Jordan
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, UAE
| | - Yazun Jarrar
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Tariq Al-Qirim
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan
| |
Collapse
|
6
|
Dickkopf Proteins and Their Role in Cancer: A Family of Wnt Antagonists with a Dual Role. Pharmaceuticals (Basel) 2021; 14:ph14080810. [PMID: 34451907 PMCID: PMC8400703 DOI: 10.3390/ph14080810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022] Open
Abstract
The Wnt signaling pathway regulates crucial aspects such as cell fate determination, cell polarity and organogenesis during embryonic development. Wnt pathway deregulation is a hallmark of several cancers such as lung, gastric and liver cancer, and has been reported to be altered in others. Despite the general agreement reached by the scientific community on the oncogenic potential of the central components of the pathway, the role of the antagonist proteins remains less clear. Deregulation of the pathway may be caused by overexpression or downregulation of a wide range of antagonist proteins. Although there is growing information related to function and regulation of Dickkopf (DKK) proteins, their pharmacological potential as cancer therapeutics still has not been fully developed. This review provides an update on the role of DKK proteins in cancer and possible potential as therapeutic targets for the treatment of cancer; available compounds in pre-clinical or clinical trials are also reviewed.
Collapse
|
7
|
The Role of the Metzincin Superfamily in Prostate Cancer Progression: A Systematic-Like Review. Int J Mol Sci 2021; 22:ijms22073608. [PMID: 33808504 PMCID: PMC8036576 DOI: 10.3390/ijms22073608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer remains a leading cause of cancer-related morbidity in men. Potentially important regulators of prostate cancer progression are members of the metzincin superfamily of proteases, principally through their regulation of the extracellular matrix. It is therefore timely to review the role of the metzincin superfamily in prostate cancer and its progression to better understand their involvement in this disease. A systematic-like search strategy was conducted. Articles that investigated the roles of members of the metzincin superfamily and their key regulators in prostate cancer were included. The extracted articles were synthesized and data presented in tabular and narrative forms. Two hundred and five studies met the inclusion criteria. Of these, 138 investigated the role of the Matrix Metalloproteinase (MMP) subgroup, 34 the Membrane-Tethered Matrix Metalloproteinase (MT-MMP) subgroup, 22 the A Disintegrin and Metalloproteinase (ADAM) subgroup, 8 the A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) subgroup and 53 the Tissue Inhibitor of Metalloproteinases (TIMP) family of regulators, noting that several studies investigated multiple family members. There was clear evidence that specific members of the metzincin superfamily are involved in prostate cancer progression, which can be either in a positive or negative manner. However, further understanding of their mechanisms of action and how they may be used as prognostic indicators or molecular targets is required.
Collapse
|
8
|
Mohammadi M, Irani S, Salahshourifar I, Hosseini J, Moradi A, Pouresmaeili F. The Effect of Hormone Therapy on the Expression of Prostate Cancer and Multi-Epigenetic Marker Genes in a Population of Iranian Patients. Cancer Manag Res 2020; 12:3691-3697. [PMID: 32547205 PMCID: PMC7245437 DOI: 10.2147/cmar.s251297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/30/2020] [Indexed: 11/23/2022] Open
Abstract
Background and Aim Many recent studies have shown a direct relationship between the decrease in the expression of GSTP1 and RASSF1 with the incidence and progression of prostate cancer. Moreover, the expression level of these genes is greatly affected by epigenetic factors and their methylation pattern. Given the prevalence of prostate cancer and the importance of choosing the best method to inhibit the progression of the disease and provide specific treatment, it is important to evaluate the effect of hormone therapy on the expression of effective prostate cancer genes and epigenetic markers. Patients and Methods In this case-control study, 35 prostate cancer samples were examined before and after hormone therapy. Following the blood sampling, RNA extraction, and cDNA synthesis, the expression of GSTP1, RASSF1, HDAC, DNMT3A, and DNMT3B was assessed by real-time PCR. Results The results analysis showed that the expression of GSTP1, RASSF1, and DNMT3B was significantly increased, DNMT3A was significantly decreased (P value<0.05) and HDAC expression did not change significantly (P value=0.19) after hormone therapy. Discussion Significant changes in the expression of GSTP1, RASSF1, DNMT3B and DNMT3A in the studied samples indicate that these genes are susceptible targets for cancer hormone therapy in Iranian men like in the other populations. Evaluation of gene activity in a larger population of patients may support these findings.
Collapse
Affiliation(s)
- Mahan Mohammadi
- Department of Molecular Genetics, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Molecular Genetics, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Iman Salahshourifar
- Department of Molecular Genetics, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Jalil Hosseini
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Moradi
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Shohadaye Tajrish Hospital, Tehran, Iran
| | - Farkhondeh Pouresmaeili
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|