1
|
Hu Y, Zheng M, Zhang D, Gou R, Liu O, Wang S, Lin B. Identification of the prognostic value of a 2-gene signature of the WNT gene family in UCEC using bioinformatics and real-world data. Cancer Cell Int 2021; 21:516. [PMID: 34565373 PMCID: PMC8474865 DOI: 10.1186/s12935-021-02215-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 12/29/2022] Open
Abstract
Background The WNT gene family plays an important role in the occurrence and development of malignant tumors, but its involvement has not been systematically analyzed in uterine corpus endometrial carcinoma (UCEC). This study aimed to evaluate the prognostic value of the WNT gene family in UCEC. Methods Pan-cancer transcriptome data of the UCSC Xena database and Genotype-Tissue Expression (GTEx) normal tissue data were downloaded to analyze the expression and prognosis of 19 WNT family genes in UCEC. A cohort from The Cancer Genome Atlas-Uterine Corpus Endometrial Carcinoma (TCGA-UCEC) was used to analyze the expression of the WNT gene family in different immune subtypes and clinical subgroups. The STRING database was used to analyze the interaction of the WNT gene family and its biological function. Univariate Cox regression analysis and Lasso cox analysis were used to identify the genes associated with significant prognosis and to construct multi signature prognosis model. An immunohistochemical assay was used to verify the predictive ability of the model. Risk score and the related clinical features were used to construct a nomogram. Results The expression levels of WNT2, WNT3, WNT3A, WNT5A, WNT7A, and WNT10A were significantly different among different immune subtypes and correlated with TP53 mutation. According to the WNT family genes related to the prognosis of UCEC, UCEC was classified into two subtypes (C1, C2). The prognosis of subtype C1 was significantly better than that of subtype C2. A 2-gene signature (WNT2 and WNT10A) was constructed and the two significantly prognostic groups can be divided based on median Risk score. These results were verified using real-world data, and the nomogram constructed using clinical features and Risk score had good prognostic ability. Conclusions The 2-gene signature including WNT2 and WNT10A can be used to predict the prognosis of patients with UCEC, which is important for clinical decision-making and individualized therapy for patients with UCEC.
Collapse
Affiliation(s)
- Yuexin Hu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Benxi, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Mingjun Zheng
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Benxi, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China.,Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Dandan Zhang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Benxi, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Rui Gou
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Benxi, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Ouxuan Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Benxi, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Shuang Wang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Benxi, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Bei Lin
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China. .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Benxi, China. .,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China. .,4th Gynecological Ward, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Liaoning, 110004, Shenyang, People's Republic of China.
| |
Collapse
|
2
|
Liao R, Liu L, Zhou J, Wei X, Huang P. Current Molecular Biology and Therapeutic Strategy Status and Prospects for circRNAs in HBV-Associated Hepatocellular Carcinoma. Front Oncol 2021; 11:697747. [PMID: 34277444 PMCID: PMC8284075 DOI: 10.3389/fonc.2021.697747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) are newly classified noncoding RNA (ncRNA) members with a covalently closed continuous loop structure that are involved in immune responses against hepatitis B virus (HBV) infections and play important biological roles in the occurrence and pathogenesis of HCC progression. The roles of circRNAs in HBV-associated HCC (HBV-HCC) have gained increasing attention. Substantial evidence has revealed that both tissue and circulating circRNAs may serve as potential biomarkers for diagnostic, prognostic and therapeutic purposes. So far, at least four circRNA/miRNA regulatory axes such as circRNA_101764/miR-181, circRNA_100338/miR-141-3p, circ-ARL3/miR-1305, circ-ATP5H/miR-138-5p, and several circulating circRNAs were reported to be associated with HBV-HCC development. Notably, TGF/SMAD, JAK/STAT, Notch and Wnt/β-catenin signaling pathways may play pivotal roles in this HBV-driven HCC via several circRNAs. Moreover, in non-HBV HCC patients or HCC patients partially infected by HBV, numerous circRNAs have been identified to be important regulators impacting the malignant biological behavior of HCC. Furthermore, the role of circRNAs in HCC drug resistance has become a focus of research with the aim of reversing chemoresistance and immune resistance. Herein, we review the molecular biology of circRNAs in HBV-HCC and their potential in therapeutic strategies.
Collapse
Affiliation(s)
- Rui Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Zhou
- Department of Hepatobiliary Surgery, The People's Rongchang Hospital, Chongqing, China
| | - Xufu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Soares-Lima SC, Mehanna H, Camuzi D, de Souza-Santos PT, Simão TDA, Nicolau-Neto P, Almeida Lopes MDS, Cuenin C, Talukdar FR, Batis N, Costa I, Dias F, Degli Esposti D, Boroni M, Herceg Z, Ribeiro Pinto LF. Upper Aerodigestive Tract Squamous Cell Carcinomas Show Distinct Overall DNA Methylation Profiles and Different Molecular Mechanisms behind WNT Signaling Disruption. Cancers (Basel) 2021; 13:3014. [PMID: 34208581 PMCID: PMC8234055 DOI: 10.3390/cancers13123014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 12/28/2022] Open
Abstract
Upper aerodigestive tract (UADT) tumors present different biological behavior and prognosis, suggesting specific molecular mechanisms underlying their development. However, they are rarely considered as single entities (particularly head and neck subsites) and share the most common genetic alterations. Therefore, there is a need for a better understanding of the global DNA methylation differences among UADT tumors. We performed a genome-wide DNA methylation analysis of esophageal (ESCC), laryngeal (LSCC), oral (OSCC) and oropharyngeal (OPSCC) squamous cell carcinomas, and their non-tumor counterparts. The unsupervised analysis showed that non-tumor tissues present markedly distinct DNA methylation profiles, while tumors are highly heterogeneous. Hypomethylation was more frequent in LSCC and OPSCC, while ESCC and OSCC presented mostly hypermethylation, with the latter showing a CpG island overrepresentation. Differentially methylated regions affected genes in 127 signaling pathways, with only 3.1% of these being common among different tumor subsites, but with different genes affected. The WNT signaling pathway, known to be dysregulated in different epithelial tumors, is a frequent hit for DNA methylation and gene expression alterations in ESCC and OPSCC, but mostly for genetic alterations in LSCC and OSCC. UADT tumor subsites present differences in genome-wide methylation regarding their profile, intensity, genomic regions and signaling pathways affected.
Collapse
Affiliation(s)
- Sheila Coelho Soares-Lima
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rua André Cavalcanti, 37–6° Andar, Bairro de Fátima, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.); (P.N.-N.); (M.d.S.A.L.)
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education (InHANSE), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.M.); (N.B.)
| | - Diego Camuzi
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rua André Cavalcanti, 37–6° Andar, Bairro de Fátima, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.); (P.N.-N.); (M.d.S.A.L.)
| | | | - Tatiana de Almeida Simão
- Departamento de Bioquímica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro 87 fundos, Vila Isabel, Rio de Janeiro 20551-013, Brazil;
| | - Pedro Nicolau-Neto
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rua André Cavalcanti, 37–6° Andar, Bairro de Fátima, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.); (P.N.-N.); (M.d.S.A.L.)
| | - Monique de Souza Almeida Lopes
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rua André Cavalcanti, 37–6° Andar, Bairro de Fátima, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.); (P.N.-N.); (M.d.S.A.L.)
| | - Cyrille Cuenin
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (C.C.); (F.R.T.); (D.D.E.); (Z.H.)
| | - Fazlur Rahman Talukdar
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (C.C.); (F.R.T.); (D.D.E.); (Z.H.)
| | - Nikolaos Batis
- Institute of Head and Neck Studies and Education (InHANSE), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.M.); (N.B.)
| | - Izabella Costa
- Seção de Cirurgia de Cabeça e Pescoço, Instituto Nacional de Câncer—INCA, Praça da Cruz Vermelha, Rio de Janeiro 20230-130, Brazil; (I.C.); (F.D.)
| | - Fernando Dias
- Seção de Cirurgia de Cabeça e Pescoço, Instituto Nacional de Câncer—INCA, Praça da Cruz Vermelha, Rio de Janeiro 20230-130, Brazil; (I.C.); (F.D.)
| | - Davide Degli Esposti
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (C.C.); (F.R.T.); (D.D.E.); (Z.H.)
| | - Mariana Boroni
- Bioinformatics and Computational Biology Lab, Brazilian National Cancer Institute, Rua André Cavalcanti, 37–1° Andar, Bairro de Fátima, Rio de Janeiro 20231-050, Brazil;
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (C.C.); (F.R.T.); (D.D.E.); (Z.H.)
| | - Luis Felipe Ribeiro Pinto
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rua André Cavalcanti, 37–6° Andar, Bairro de Fátima, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.); (P.N.-N.); (M.d.S.A.L.)
- Departamento de Bioquímica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro 87 fundos, Vila Isabel, Rio de Janeiro 20551-013, Brazil;
| |
Collapse
|
4
|
Ni CJ, Qin XS, Huang ZS. Role of Wnt/β-catenin signaling pathway in occurrence and development of hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2021; 29:190-196. [DOI: 10.11569/wcjd.v29.i4.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies have shown that the occurrence and development of liver cancer are related to a variety of signaling pathways. The Wnt/β-catenin signaling pathway is involved in all stages of liver disease progression, from initial liver damage to inflammation, fibrosis, and cirrhosis, as well as the occurrence and progression of tumors. Abnormal Wnt/β-catenin signaling promotes the development and progression of different liver diseases, including cancer. This review introduces the activation, biological function, and regulatory mechanism of the Wnt/β-catenin signaling pathway, discusses the role of ngthis pathway in the occurrence and progression of liver cancer, and describes factors that can inhibit the Wnt/β-catenin signaling pathway, such as small molecule inhibitors, traditional Chinese medicine extracts, and microRNAs, with an aim to provide reference for the basic and clinical research of liver cancer.
Collapse
Affiliation(s)
- Cai-Ju Ni
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Shan Qin
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China,Department of Gastroenterology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Zan-Song Huang
- Department of Gastroenterology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China,Guangxi Clinical Research Center for Hepatobiliary Diseases, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
5
|
Zhang X, Wang L, Yan Y. Identification of potential key genes and pathways in hepatitis B virus-associated hepatocellular carcinoma by bioinformatics analyses. Oncol Lett 2020; 19:3477-3486. [PMID: 32269621 PMCID: PMC7138035 DOI: 10.3892/ol.2020.11470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) is one of the leading causes of hepatocellular carcinoma (HCC). The precise molecular mechanisms by which HBV contributes to HCC development are not fully understood. The key genes and pathways involved in the transformation of nontumor hepatic tissues into HCC tissues in patients with HBV infection are essential to guide the treatment of HBV-associated HCC. Five datasets were collected from the Gene Expression Omnibus database to form a large cohort. Differentially expressed genes (DEGs) were identified between HCC tissues and nontumor hepatic tissues from HBV-infected patients using the ‘limma’ package. The top 50 upregulated and top 50 downregulated DEGs in HCC vs. nontumor tissues were demonstrated in subsets by heat maps. Based on the DEGs, Gene Ontology functional and Kyoto Encyclopedia of Genes and Genomes pathways enrichment analyses were performed. Several key pathways of the up- and downregulated DEGs were identified and presented by protein-protein interaction (PPI) networks. A total of 1,934 DEGs were identified. The upregulated DEGs were primarily associated with the ‘cell cycle’. Among the DEGs enriched in the ‘cell cycle’ pathway, 6 genes had a log2-fold change >2: SFN, BUB1B, TTK, CCNB1, CDK1 and CDC20. The downregulated DEGs were primarily associated with the metabolic pathways, such as ‘carbon metabolism’, ‘glycine, serine and threonine metabolism’, ‘tryptophan metabolism’, ‘retinol metabolism’ and ‘alanine, aspartate and glutamate metabolism’. The DEGs in the ‘cell cycle’ and ‘metabolic pathways’ were presented by the PPI networks respectively. Overall, the present study provides new insights into the specific etiology of HCC and molecular mechanisms for the transformation of nontumor hepatic tissues into HCC tissues in patients with a history of HBV infection and several potential therapeutic targets for targeted therapy in these patients.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingchen Wang
- Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yehong Yan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|