1
|
Ibrahim NS, Sayed HA, Sharaky M, Diab HM, Elwahy AHM, Abdelhamid IA. Synthesis, cytotoxicity, anti-inflammatory, anti-metastatic and anti-oxidant activities of novel chalcones incorporating 2-phenoxy-N-arylacetamide and thiophene moieties: induction of apoptosis in MCF7 and HEP2 cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:10091-10107. [PMID: 38980411 PMCID: PMC11582173 DOI: 10.1007/s00210-024-03255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/22/2024] [Indexed: 07/10/2024]
Abstract
Eight Novel chalcones were synthesized and their structures were confirmed by different spectral tools. All the prepared compounds were subjected to SRB cytotoxic screening against several cancer cell lines. Compound 5c exerted the most promising effect against MCF7 and HEP2 cells with IC50 values of 9.5 and 12 µg/mL, respectively. Real-time PCR demonstrated the inhibitory effect of compound 5c on the expression level of Antigen kiel 67 (KI-67), Survivin, Interleukin-1beta (IL-1B), Interleukin-6 (IL-6), Cyclooxygenase-2 (COX-2) and Protein kinase B (AKT1) genes. Flow-cytometric analysis of the cell cycle indicated that compound 5c stopped the cell cycle at the G0/G1 and G2/M phases in MCF7 and HEP2 treated cells, respectively. ELISA assay showed that Caspase 8, Caspase 9, P53, BAX, and Glutathione (GSH) were extremely activated and Matrix metalloproteinase 2 (MMP2), Matrix metalloproteinase 9 (MMP9), BCL2, Malondialdehyde (MDA), and IL-6 were deactivated in 5c treated MCF7 and HEP2 cells. Wound healing revealed that chalcone 5c reduced the ability to close the scrape wound and decreased the number of migrating MCF7 and HEP2 cells compared to the untreated cells after 48 h. Theoretical molecular modeling against P53 cancer mutant Y220C and Bcl2 showed binding energies of -22.8 and -24.2 Kcal/mole, respectively, which confirmed our ELISA results.
Collapse
Affiliation(s)
- Nada S Ibrahim
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Hager Ahmed Sayed
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Marwa Sharaky
- Pharmacology unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hadeer M Diab
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed H M Elwahy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Ismail A Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
2
|
Singh S, Saxena S, Sharma H, Gupta G, Dua K, Singh SK. Opening avenue for the targeted treatment of lung cancer using xanthohumol loaded nanostructured lipid carriers. EXCLI JOURNAL 2024; 23:1068-1070. [PMID: 39421029 PMCID: PMC11483262 DOI: 10.17179/excli2024-7656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024]
Affiliation(s)
- Shubham Singh
- School of Biosciences and Engineering, Lovely Professional University, Phagwara, Punjab, India
| | - Sangeeta Saxena
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Himani Sharma
- School of Biosciences and Engineering, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Gupta
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Center for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Gholizadeh Siahmazgi Z, Irani S, Ghiaseddin A, Fallah P, Haghpanah V. Xanthohumol hinders invasion and cell cycle progression in cancer cells through targeting MMP2, MMP9, FAK and P53 genes in three-dimensional breast and lung cancer cells culture. Cancer Cell Int 2023; 23:153. [PMID: 37533078 PMCID: PMC10394853 DOI: 10.1186/s12935-023-03009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Despite recent advances in the treatment of lung and breast cancer, the mortality with these two types of cancer is high. Xanthohumol (XN) is known as a bioactive compound that shows an anticancer effect on cancer cells. Here, we intended to investigate the anticancer effects of XN on the breast and lung cancer cell lines, using the three-dimensional (3D) cell culture. METHODS XN was isolated from Humulus lupulus using Preparative-Thin Layer Chromatography (P-TLC) method and its authenticity was documented through Fourier Transform Infrared spectroscopy (FT-IR) and Hydrogen Nuclear Magnetic Resonance (H-NMR) methods. The spheroids of the breast (MCF-7) and lung (A549) cancer cell lines were prepared by the Hanging Drop (HD) method. Subsequently, the IC50s of XN were determined using the MTT assay in 2D and 3D cultures. Apoptosis was evaluated by Annexin V/PI flow cytometry and NFκB1/2, BAX, BCL2, and SURVIVIN expressions. Cell cycle progression was determined by P21, and P53 expressions as well as PI flow cytometry assays. Multidrug resistance was investigated through examining the expression of MDR1 and ABCG2. The invasion was examined by MMP2, MMP9, and FAK expression and F-actin labeling with Phalloidin-iFluor. RESULTS While the IC50s for the XN treatment were 1.9 µM and 4.74 µM in 2D cultures, these values were 12.37 µM and 31.17 µM in 3D cultures of MCF-7 and A549 cells, respectively. XN induced apoptosis in MCF-7 and A549 cell lines. Furthermore, XN treatment reduced cell cycle progression, multidrug resistance, and invasion at the molecular and/or cellular levels. CONCLUSIONS According to our results of XN treatment in 3D conditions, this bioactive compound can be introduced as an adjuvant anti-cancer agent for breast and lung cancer.
Collapse
Affiliation(s)
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Ghiaseddin
- Department of Biomedical Engineering Division, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Parviz Fallah
- Laboratory Science Department, Allied Medicine Faculty, Alborz University of Medical Sciences, Karaj, Iran
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Endocrinology and Metabolism Research Center (EMRC), Dr. Shariati Hospital, North Kargar Ave, 14114, Tehran, Iran.
| |
Collapse
|
4
|
Corrado C, Barreca MM, Raimondo S, Diana P, Pepe G, Basilicata MG, Conigliaro A, Alessandro R. Nobiletin and xanthohumol counteract the TNFα-mediated activation of endothelial cells through the inhibition of the NF-κB signaling pathway. Cell Biol Int 2023; 47:634-647. [PMID: 36378586 DOI: 10.1002/cbin.11963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
Angiogenesis, a process characterized by the formation of new blood vessels from pre-existing ones, is a crucial step in tumor growth and dissemination. Given the ability of tumors to interfere with multiple or different molecular pathways to promote angiogenesis, there is an increasing need to therapeutically block tumor progression by targeting multiple antiangiogenic pathways. Natural polyphenols present health-protective properties, which are likely attributed to their ability to activate multiple pathways involved in inflammation, carcinogenesis, and angiogenesis. Recently, increased attention has been addressed to the ability of flavonoids, the most abundant polyphenols in the diet, to prevent cancer by suppressing angiogenesis. Here we investigate the mechanisms by which xanthohumol (the major prenylated flavonoid of the hop plant Humulus lupulus L.) and nobiletin (flavonoid from red-orange Citrus sinensis) can modulate the effects of Tumor Necrosis Factor-α (TNF-α) on human umbilical vein endothelial cells (HUVEC). The results reported in this paper show that xanthohumol and nobiletin pretreatment of HUVEC inhibits the effects induced by TNF-α on cell migration, invasion capability, and colon cancer cell adhesion on the endothelial monolayer. Moreover, the pretreatment reduces metalloproteinases and adhesion molecules' expression. Finally, our results highlight that xanthohumol and nobiletin can counteract the effects of TNF-α on angiogenesis and invasiveness, mainly through Vascular Endothelial Growth Factor and NF-κB pathways. Since angiogenesis plays an important pathological role in the progression of several diseases, our findings may provide clues for developing xanthohumol and nobiletin as therapeutic agents against angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Chiara Corrado
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Maria Magdalena Barreca
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Stefania Raimondo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Fisciano, Campania, Italy
| | | | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| |
Collapse
|
5
|
A-Kinase Anchor Protein 95 Is Involved in ERK1/2-Elk-1 Signal Transduction in Colon Cancer. Anal Cell Pathol 2023; 2023:8242646. [PMID: 36691407 PMCID: PMC9867590 DOI: 10.1155/2023/8242646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Objectives To assess A-kinase anchor protein 95 (AKAP95), B-Raf, extracellular regulated protein kinases 1/2 (ERK1/2), and Elk-1 expression in colon cancer tissue, and characterize AKAP95 associations with B-Raf, ERK1/2, Elk-1, and colon cancer clinicopathological indices. Methods The immunohistochemistry streptavidin-perosidase (SP) method was used to determine protein expression levels in 64 colon cancer and 32 para-carcinoma tissue specimens. Results (1) Positive AKAP95 expression rates in colon cancer tissue were higher when compared with para-carcinoma tissue (92.19% vs. 59.38%, P < 0.05). Similar findings were determined for B-Raf (76.56% vs. 25%, P < 0.05), ERK1/2 (90.63% vs. 31.25%, P < 0.05), and Elk-1 levels (92.19% vs. 40.63%, P < 0.05). (2) No significant associations were identified between AKAP95, B-Raf, ERK1/2, and Elk-1 protein expression and degree of differentiation, histological type, and lymph node metastasis in colon cancer samples (P > 0.05); however, in The Cancer Genome Atlas and Gene Expression Omnibus datasets, AKAP95 was closely related to immune infiltration, and highly expressed AKAP95 was negatively associated with overall survival and relapse free survival rates in colon cancer patients. (3) Correlations were observed between AKAP95 and ERK1/2, AKAP95 and Elk-1, B-Raf and ERK1/2, B-Raf and Elk-1, and ERK1/2 and Elk-1 (all P < 0.05), but no correlation was observed between AKAP95 and B-Raf (P > 0.05). Conclusions AKAP95 may affect immune infiltration levels in colon cancer by participating in ERK1/2-Elk-1 signal transduction.
Collapse
|
6
|
Casalino L, Talotta F, Cimmino A, Verde P. The Fra-1/AP-1 Oncoprotein: From the "Undruggable" Transcription Factor to Therapeutic Targeting. Cancers (Basel) 2022; 14:cancers14061480. [PMID: 35326630 PMCID: PMC8946526 DOI: 10.3390/cancers14061480] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
The genetic and epigenetic changes affecting transcription factors, coactivators, and chromatin modifiers are key determinants of the hallmarks of cancer. The acquired dependence on oncogenic transcriptional regulators, representing a major determinant of cancer cell vulnerability, points to transcription factors as ideal therapeutic targets. However, given the unavailability of catalytic activities or binding pockets for small-molecule inhibitors, transcription factors are generally regarded as undruggable proteins. Among components of the AP-1 complex, the FOS-family transcription factor Fra-1, encoded by FOSL1, has emerged as a prominent therapeutic target. Fra-1 is overexpressed in most solid tumors, in response to the BRAF-MAPK, Wnt-beta-catenin, Hippo-YAP, IL-6-Stat3, and other major oncogenic pathways. In vitro functional analyses, validated in onco-mouse models and corroborated by prognostic correlations, show that Fra-1-containing dimers control tumor growth and disease progression. Fra-1 participates in key mechanisms of cancer cell invasion, Epithelial-to-Mesenchymal Transition, and metastatic spreading, by driving the expression of EMT-inducing transcription factors, cytokines, and microRNAs. Here we survey various strategies aimed at inhibiting tumor growth, metastatic dissemination, and drug resistance by interfering with Fra-1 expression, stability, and transcriptional activity. We summarize several tools aimed at the design and tumor-specific delivery of Fra-1/AP-1-specific drugs. Along with RNA-based therapeutics targeting the FOSL1 gene, its mRNA, or cognate regulatory circRNAs, we will examine the exploitation of blocking peptides, small molecule inhibitors, and innovative Fra-1 protein degraders. We also consider the possible caveats concerning Fra-1 inhibition in specific therapeutic contexts. Finally, we discuss a recent suicide gene therapy-based approach, aimed at selectively killing the Fra-1-overexpressing neoplastic cells.
Collapse
Affiliation(s)
- Laura Casalino
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
- Correspondence: (L.C.); (P.V.)
| | | | - Amelia Cimmino
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
| | - Pasquale Verde
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
- Correspondence: (L.C.); (P.V.)
| |
Collapse
|
7
|
Yang L, Wang Z. Natural Products, Alone or in Combination with FDA-Approved Drugs, to Treat COVID-19 and Lung Cancer. Biomedicines 2021; 9:689. [PMID: 34207313 PMCID: PMC8234041 DOI: 10.3390/biomedicines9060689] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
As a public health emergency of international concern, the highly contagious coronavirus disease 2019 (COVID-19) pandemic has been identified as a severe threat to the lives of billions of individuals. Lung cancer, a malignant tumor with the highest mortality rate, has brought significant challenges to both human health and economic development. Natural products may play a pivotal role in treating lung diseases. We reviewed published studies relating to natural products, used alone or in combination with US Food and Drug Administration-approved drugs, active against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and lung cancer from 1 January 2020 to 31 May 2021. A wide range of natural products can be considered promising anti-COVID-19 or anti-lung cancer agents have gained widespread attention, including natural products as monotherapy for the treatment of SARS-CoV-2 (ginkgolic acid, shiraiachrome A, resveratrol, and baicalein) or lung cancer (daurisoline, graveospene A, deguelin, and erianin) or in combination with FDA-approved anti-SARS-CoV-2 agents (cepharanthine plus nelfinavir, linoleic acid plus remdesivir) and anti-lung cancer agents (curcumin and cisplatin, celastrol and gefitinib). Natural products have demonstrated potential value and with the assistance of nanotechnology, combination drug therapies, and the codrug strategy, this "natural remedy" could serve as a starting point for further drug development in treating these lung diseases.
Collapse
Affiliation(s)
- Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China;
| | - Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Sławińska-Brych A, Mizerska-Kowalska M, Król SK, Stepulak A, Zdzisińska B. Xanthohumol Impairs the PMA-Driven Invasive Behaviour of Lung Cancer Cell Line A549 and Exerts Anti-EMT Action. Cells 2021; 10:cells10061484. [PMID: 34204745 PMCID: PMC8231538 DOI: 10.3390/cells10061484] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
Xanthohumol (XN), the main prenylated flavonoid from hop cones, has been recently reported to exert significant proapoptotic, anti-proliferative, and growth inhibitory effects against lung cancer in both in vitro and in vivo studies. However, its anti-metastatic potential towards this malignancy is still unrevealed. Previously, we indicated that the human lung adenocarcinoma A549 cell line was sensitive to XN treatment. Therefore, using the same tumour cell model, we have studied the influence of XN on the phorbol-12-myristate-13-acetate (PMA)-induced cell migration and invasion. The effects of XN on the expression/activity of pro-invasive MMP-9 and MMP-2 and the expression of MMP inhibitors, i.e., TIMP-1 and TIMP-2 (anti-angiogenic factors), were evaluated. Additionally, the influence of XN on the production of the key pro-angiogenic cytokine, i.e., VEGF, and the release of TGF-β, which is both a pro-angiogenic cytokine and an epithelial-mesenchymal transition (EMT) stimulator, was studied. Furthermore, the influence of XN on the expression of EMT-associated proteins such as E-cadherin and α-E-catenin (epithelial markers), vimentin and N-cadherin (mesenchymal markers), and Snail-1 (transcriptional repressor of E-cadherin) was studied. To elucidate the molecular mechanism underpinning the XN-mediated inhibition of metastatic progression in PMA-activated cells, the phosphorylation levels of AKT, FAK, and ERK1/2 kinases, which are signalling molecules involved in EMT program activation, were assayed. The results showed that XN in non-cytotoxic concentrations impaired the PMA-driven migratory and invasive capacity of A549 cells by decreasing the level of expression of MMP-9 and concomitantly increasing the expression of the TIMP-1 protein, i.e., a specific blocker of pro-MMP-9 activation. Moreover, XN decreased the PMA-induced production of VEGF and TGF-β. Furthermore, the XN-treatment counteracted the PMA-induced EMT of the A549 cells by the upregulation of E-cadherin and α-E-catenin and the downregulation of N-cadherin, vimentin, and Snail-1 expression. The proposed mechanism underlying the anti-invasive XN activity involved the inhibition of the ERK/MAPK pathway and suppression of FAK and PI3/AKT signalling. Our results suggesting migrastatic properties of XN against lung cancer cells require further verification in in vivo assays.
Collapse
Affiliation(s)
- Adrianna Sławińska-Brych
- Department of Cell Biology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
- Correspondence: ; Tel.: +48-81-537-59-04
| | - Magdalena Mizerska-Kowalska
- Department of Virology and Immunology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.M.-K.); (B.Z.)
| | - Sylwia Katarzyna Król
- Laboratory of Neuro-oncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland;
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | - Barbara Zdzisińska
- Department of Virology and Immunology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.M.-K.); (B.Z.)
| |
Collapse
|
9
|
Michalkova R, Mirossay L, Gazdova M, Kello M, Mojzis J. Molecular Mechanisms of Antiproliferative Effects of Natural Chalcones. Cancers (Basel) 2021; 13:cancers13112730. [PMID: 34073042 PMCID: PMC8198114 DOI: 10.3390/cancers13112730] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Despite the important progress in cancer treatment in the past decades, the mortality rates in some types of cancer have not significantly decreased. Therefore, the search for novel anticancer drugs has become a topic of great interest. Chalcones, precursors of flavonoid synthesis in plants, have been documented as natural compounds with pleiotropic biological effects including antiproliferative/anticancer activity. This article focuses on the knowledge on molecular mechanisms of antiproliferative action of chalcones and draws attention to this group of natural compounds that may be of importance in the treatment of cancer disease. Abstract Although great progress has been made in the treatment of cancer, the search for new promising molecules with antitumor activity is still one of the greatest challenges in the fight against cancer due to the increasing number of new cases each year. Chalcones (1,3-diphenyl-2-propen-1-one), the precursors of flavonoid synthesis in higher plants, possess a wide spectrum of biological activities including antimicrobial, anti-inflammatory, antioxidant, and anticancer. A plethora of molecular mechanisms of action have been documented, including induction of apoptosis, autophagy, or other types of cell death, cell cycle changes, and modulation of several signaling pathways associated with cell survival or death. In addition, blockade of several steps of angiogenesis and proteasome inhibition has also been documented. This review summarizes the basic molecular mechanisms related to the antiproliferative effects of chalcones, focusing on research articles from the years January 2015–February 2021.
Collapse
|
10
|
Harish V, Haque E, Śmiech M, Taniguchi H, Jamieson S, Tewari D, Bishayee A. Xanthohumol for Human Malignancies: Chemistry, Pharmacokinetics and Molecular Targets. Int J Mol Sci 2021; 22:ijms22094478. [PMID: 33923053 PMCID: PMC8123270 DOI: 10.3390/ijms22094478] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
Xanthohumol (XH) is an important prenylated flavonoid that is found within the inflorescence of Humulus lupulus L. (Hop plant). XH is an important ingredient in beer and is considered a significant bioactive agent due to its diverse medicinal applications, which include anti-inflammatory, antimicrobial, antioxidant, immunomodulatory, antiviral, antifungal, antigenotoxic, antiangiogenic, and antimalarial effects as well as strong anticancer activity towards various types of cancer cells. XH acts as a wide ranging chemopreventive and anticancer agent, and its isomer, 8-prenylnaringenin, is a phytoestrogen with strong estrogenic activity. The present review focuses on the bioactivity of XH on various types of cancers and its pharmacokinetics. In this paper, we first highlight, in brief, the history and use of hops and then the chemistry and structure–activity relationship of XH. Lastly, we focus on its prominent effects and mechanisms of action on various cancers and its possible use in cancer prevention and treatment. Considering the limited number of available reviews on this subject, our goal is to provide a complete and detailed understanding of the anticancer effects of XH against different cancers.
Collapse
Affiliation(s)
- Vancha Harish
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144 411, Punjab, India;
| | - Effi Haque
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (M.Ś.); (H.T.)
| | - Magdalena Śmiech
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (M.Ś.); (H.T.)
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (M.Ś.); (H.T.)
| | - Sarah Jamieson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144 411, Punjab, India
- Correspondence: (D.T.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (D.T.); or (A.B.)
| |
Collapse
|