1
|
Sherif O, Khelwatty SA, Bagwan I, Seddon AM, Dalgleish A, Mudan S, Modjtahedi H. Expression of EGFRvIII and its co‑expression with wild‑type EGFR, or putative cancer stem cell biomarkers CD44 or EpCAM are associated with poorer prognosis in patients with hepatocellular carcinoma. Oncol Rep 2024; 52:172. [PMID: 39450530 PMCID: PMC11526438 DOI: 10.3892/or.2024.8831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2024] [Accepted: 08/30/2024] [Indexed: 10/26/2024] Open
Abstract
The aberrant expression of HER family members and cancer stem cells (CSCs) have been associated with tumour progression and resistance to therapy. At present, several HER inhibitors have been approved for the treatment of patients with a range of cancers but not for the treatment of patients with hepatocellular carcinoma (HCC). The present study investigated the co‑expression and prognostic significance of HER family members, type‑III deletion mutant EGFR (EGFRvIII), and the putative CSC biomarkers CD44 and epithelial cell adhesion molecule (EpCAM) in 43 patients with HCC. The relative expression of these biomarkers was determined using immunohistochemistry. At a cut off value of >5% of tumour cells stained for these biomarkers, 35% [wild‑type (wt)EGFR], 58% (HER‑2), 0% (HER‑3), 19% (HER‑4), 26% (EGFRvIII), 40% (CD44) and 33% (EpCAM) of patients were positive. In 23, 14 and 9% of the patients, wtEGFR expression was accompanied by co‑expression with HER‑2, EGFRvIII and HER‑2/EGFRvIII, respectively. EGFRvIII expression, membranous expression of CD44 and co‑expression of wtEGFR/EGFRvIII were associated with poor overall survival (OS). By contrast, cytoplasmic CD44 expression was associated with a longer OS time. The present study also investigated the effect of several agents targeting one or more members of the HER family, other growth factor receptors and cell signalling proteins on the proliferation of HCC cell lines. Among agents targeting one or more members of the HER family, the pan‑HER family blocker afatinib was the most effective, inhibiting the proliferation of three out of seven human liver cancer cell lines (LCCLs), while the CDK inhibitor dinacicilib was the most effective agent, inhibiting the proliferation of all human LCCLs tested. Taken together, the present results suggested that EGFRvIII expression and its co‑expression with wtEGFR or CD44 was of prognostic significance. These results also support further investigations of the therapeutic potential of drugs targeting EGFRvIII and other members of the HER family in patients with HCC.
Collapse
MESH Headings
- Humans
- Epithelial Cell Adhesion Molecule/metabolism
- Epithelial Cell Adhesion Molecule/genetics
- Hyaluronan Receptors/metabolism
- Hyaluronan Receptors/genetics
- ErbB Receptors/metabolism
- ErbB Receptors/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Female
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Prognosis
- Middle Aged
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Male
- Aged
- Adult
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Aged, 80 and over
Collapse
Affiliation(s)
- Ozlem Sherif
- Department of Biomolecular Sciences, School of Life Science, Pharmacy and Chemistry, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK
| | - Said A. Khelwatty
- Department of Biomolecular Sciences, School of Life Science, Pharmacy and Chemistry, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK
| | - Izhar Bagwan
- Department of Biomolecular Sciences, School of Life Science, Pharmacy and Chemistry, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK
- Berkshire Surrey Pathology Services, Royal Surrey Hospital, Guildford GU2 7XX, UK
| | - Alan M. Seddon
- Department of Biomolecular Sciences, School of Life Science, Pharmacy and Chemistry, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK
| | - Angus Dalgleish
- Infection and Immunity Research Institute, St George's, University of London, London SW17 0RE, UK
| | | | - Helmout Modjtahedi
- Department of Biomolecular Sciences, School of Life Science, Pharmacy and Chemistry, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
2
|
Mulliqi E, Khelwatty S, Morgan A, Ashkan K, Modjtahedi H. Synergistic Effects of Neratinib in Combination With Palbociclib or Miransertib in Brain Cancer Cells. World J Oncol 2024; 15:492-505. [PMID: 38751701 PMCID: PMC11092418 DOI: 10.14740/wjon1873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Background Aberrant expression and activation of epidermal growth factor receptor (EGFR) resulted in approval of several forms of EGFR inhibitors in the treatment of patients with a wide range of epithelial cancers. However, no EGFR inhibitor has yet been approved for the treatment of patients with brain cancer, indicating that targeting EGFR alone may not be sufficient in some patients. Methods In this study, we investigated the role of all members of the EGFR family, other growth factor receptors, cell-cycle proteins, and downstream cell signaling pathways (e.g., mitogen-activated protein kinase (MAPK), serine/threonine protein kinase (AKT), signal transducer and activator of transcription (STAT3), Src, Abelson murine leukemia viral oncogene homolog (Abl)) on the growth of a panel of human brain cancer cell lines (HBCCLs). We examined the growth response of HBCCLs to treatment with 17 targeted agents compared to two cytotoxic drugs. Results Of the targeted agents, the irreversible pan-human epidermal growth factor receptor (HER) inhibitors neratinib and afatinib were more effective than erlotinib and lapatinib at inhibiting the growth of all HBCCLs, and the cyclin-dependent kinase (CDK)1/2/5/9 inhibitor dinaciclib was the most potent targeted agent. We found that treatment with Src/Abl/c-kit inhibitor dasatinib, signal transducer and activator of transcription (STAT3) inhibitor stattic, Abl/platelet-derived growth factor receptor (PDGFR)α/vascular endothelial growth factor (VEGFR)2/fibroblast growth factor receptor (FGFR)1 inhibitor ponatinib, and the tropomyosin receptor kinase (TRK)/ROS proto-oncogene 1 receptor tyrosine kinase (ROS)/anaplastic lymphoma kinase (ALK) inhibitor entrectinib, also inhibited the growth of all HBCCLs. Interestingly, these agents were more effective in inhibiting growth of HBCCLs when proliferating at a slower rate. In addition to inhibiting the proliferation of HBCCLs, treatment with neratinib, dinaciclib, dasatinib, stattic and trametinib inhibited the migration of brain tumor cell line A172. Conclusions Notably, we found that treatment with neratinib in combination with palbociclib (CDK4/6 inhibitor), or miransertib (AKT1/2/3 inhibitor) resulted in synergistic growth inhibition of all HBCCLs. Our results support that repurposing drugs like neratinib in combination with the palbociclib or miransertib may be of therapeutic potential in brain cancer and warrants further investigations.
Collapse
Affiliation(s)
- Ermira Mulliqi
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston, UK
| | - Said Khelwatty
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston, UK
| | - Anna Morgan
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston, UK
| | | | - Helmout Modjtahedi
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston, UK
| |
Collapse
|
3
|
Bodea IC, Ciocan A, Zaharie FV, Bodea R, Graur F, Ursu Ș, Ciocan RA, Al Hajjar N. HER2 Overexpression in Periampullary Tumors According to Anatomical and Histological Classification-A Systematic Review. J Pers Med 2024; 14:463. [PMID: 38793045 PMCID: PMC11122564 DOI: 10.3390/jpm14050463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/02/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Pancreatic cancer is one of the most aggressive, heterogeneous, and fatal types of human cancer; therefore, more effective therapeutic drugs are urgently needed. Human epidermal growth factor receptor 2 (HER2) overexpression and amplification have been identified as a cornerstone in this pathology. The aim of this review is to identify HER2 membrane overexpression in relation to pancreatic cancer pathways that can be used in order to develop a targeted therapy. After searching the keywords, 174 articles were found during a time span of 10 years, between 2013 and 2023, but only twelve scientific papers were qualified for this investigation. The new era of biomolecular research found a significant relationship between HER2 overexpression and pancreatic cancer cells in 25-30% of cases. The variables are dependent on tumor-derived cells, with differences in receptor overexpression between PDAC (pancreatic ductal adenocarcinoma), BTC (biliary tract cancer), ampullary carcinoma, and PNETs (pancreatic neuroendocrine tumors). HER2 overexpression is frequently encountered in human pancreatic carcinoma cell lines, and the ERBB family is one of the targets in the near future of therapy, with good results in phase I, II, and III studies evaluating downregulation and tumor downstaging, respectively.
Collapse
Affiliation(s)
- Ioan Cătălin Bodea
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (I.C.B.); (F.V.Z.); (F.G.); (Ș.U.); (N.A.H.)
- “Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania;
| | - Andra Ciocan
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (I.C.B.); (F.V.Z.); (F.G.); (Ș.U.); (N.A.H.)
- “Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania;
| | - Florin Vasile Zaharie
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (I.C.B.); (F.V.Z.); (F.G.); (Ș.U.); (N.A.H.)
- “Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania;
| | - Raluca Bodea
- “Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania;
| | - Florin Graur
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (I.C.B.); (F.V.Z.); (F.G.); (Ș.U.); (N.A.H.)
- “Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania;
| | - Ștefan Ursu
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (I.C.B.); (F.V.Z.); (F.G.); (Ș.U.); (N.A.H.)
- “Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania;
| | - Răzvan Alexandru Ciocan
- Department of Surgery-Practical Abilities, “Iuliu Hațieganu” University of Medicine and Pharmacy, Marinescu Street, No. 23, 400337 Cluj-Napoca, Romania;
| | - Nadim Al Hajjar
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (I.C.B.); (F.V.Z.); (F.G.); (Ș.U.); (N.A.H.)
- “Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania;
| |
Collapse
|
4
|
Rathore M, Zhang W, Wright M, Zarei M, Vaziri-Gohar A, Hajihassani O, Abbas A, Feng H, Brody J, Markowitz SD, Winter J, Wang R. Liver Endothelium Microenvironment Promotes HER3-mediated Cell Growth in Pancreatic Ductal Adenocarcinoma. JOURNAL OF CANCER SCIENCE AND CLINICAL THERAPEUTICS 2022; 6:431-445. [PMID: 36644317 PMCID: PMC9838560 DOI: 10.26502/jcsct.5079182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
~90% metastatic pancreatic ductal adenocarcinoma (mPDAC) occurs in the liver, and the 5-year survival rate for patients with mPDAC is only at 3%. The liver has a unique endothelial cell (EC)-rich microenvironment, and preclinical studies showed that ECs promote cancer cell survival pathways by secreting soluble factors in a paracrine fashion in other types of cancer. However, the effects of liver ECs on mPDAC have not been elucidated. In this study, we used primary liver ECs and determined that liver EC-secreted factors containing conditioned medium (CM) increased PDAC cell growth, compared to control CM from PDAC cells. Using an unbiased receptor tyrosine kinase array, we identified human epidermal growth factor receptor 3 (HER3, also known as ErbB3) as a key mediator of liver EC-induced growth in PDAC cells with HER3 expression (HER3 +ve). We found that EC-secreted neuregulins activated the HER3-AKT signaling axis, and that depleting neuregulins from EC CM or blocking HER3 with an antibody, seribantumab, attenuated EC-induced functions in HER3 +ve PDAC cells, but not in cells without HER3 expression. Furthermore, we determined that EC CM increased PDAC xenograft growth in vivo, and that seribantumab blocked EC-induced growth in xenografts with HER3 expression. These findings elucidated a paracrine role of liver ECs in promoting PDAC cell growth, and identified the HER3-AKT axis as a key mediator in EC-induced functions in HER3 +ve PDAC cells. As over 70% mPDAC express HER3, this study highlights the potential of using HER3-targeted therapies for treating patients with HER3 +ve mPDAC.
Collapse
Affiliation(s)
- Moeez Rathore
- Department of Surgery, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
| | - Wei Zhang
- Department of Surgery, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
| | - Michel'le Wright
- Department of Surgery, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
| | - Mehrdad Zarei
- Department of Surgery, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
| | - Ali Vaziri-Gohar
- Department of Surgery, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
| | - Omid Hajihassani
- Department of Surgery, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
| | - Ata Abbas
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
| | - Hao Feng
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jonathan Brody
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239
| | - Sanford D Markowitz
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Department of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106. USA
| | - Jordan Winter
- Department of Surgery, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106
| | - Rui Wang
- Department of Surgery, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106
| |
Collapse
|
5
|
Cyclin Dependent Kinase-1 (CDK-1) Inhibition as a Novel Therapeutic Strategy against Pancreatic Ductal Adenocarcinoma (PDAC). Cancers (Basel) 2021; 13:cancers13174389. [PMID: 34503199 PMCID: PMC8430873 DOI: 10.3390/cancers13174389] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023] Open
Abstract
The role of CDK1 in PDAC onset and development is two-fold. Firstly, since CDK1 activity regulates the G2/M cell cycle checkpoint, overexpression of CDK1 can lead to progression into mitosis even in cells with DNA damage, a potentially tumorigenic process. Secondly, CDK1 overexpression leads to the stimulation of a range of proteins that induce stem cell properties, which can contribute to the development of cancer stem cells (CSCs). CSCs promote tumor-initiation and metastasis and play a crucial role in the development of PDAC. Targeting CDK1 showed promising results for PDAC treatment in different preclinical models, where CDK1 inhibition induced cell cycle arrest in the G2/M phase and led to induction of apoptosis. Next to this, PDAC CSCs are uniquely sensitive to CDK1 inhibition. In addition, targeting of CDK1 has shown potential for combination therapy with both ionizing radiation treatment and conventional chemotherapy, through sensitizing tumor cells and reducing resistance to these treatments. To conclude, CDK1 inhibition induces G2/M cell cycle arrest, stimulates apoptosis, and specifically targets CSCs, which makes it a promising treatment for PDAC. Screening of patients for CDK1 overexpression and further research into combination treatments is essential for optimizing this novel targeted therapy.
Collapse
|
6
|
Oshi M, Patel A, Le L, Tokumaru Y, Yan L, Matsuyama R, Endo I, Takabe K. G2M checkpoint pathway alone is associated with drug response and survival among cell proliferation-related pathways in pancreatic cancer. Am J Cancer Res 2021; 11:3070-3084. [PMID: 34249445 PMCID: PMC8263638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2021] [Accepted: 04/06/2021] [Indexed: 06/13/2023] Open
Abstract
Given the severe side effects of the treatments and poor survival, prognostic and predictive biomarkers to guide management of pancreatic cancer are in critical need. We hypothesized that cell proliferation-related pathways are associated with drug response and survival in pancreatic cancer. Six Hallmark cell proliferation-related gene sets (G2M Checkpoint, E2F Targets, MYC Targets V1 and V2, Mitotic Spindle, p53 pathway) defined by MSigDB in gene set variant analysis were evaluated in 3 independent cohorts- TCGA-PAAD (n = 176), GSE57495 (n = 63), and GSE62452 (n = 69). G2M and E2F, as well as Mitotic and p53 pathway correlated highly with other gene sets. All pathways were significantly correlated with MKI67 expression and its proliferation score, but none with cytolytic activity and the rate of pathologically complete resection (R0). All pathways were significantly associated with high alteration and expression of KRAS gene except for MYC v1. G2M, E2F, and p53 pathway were significantly associated with high alteration of TP53 gene. Interestingly, different pathways correlated with the AUC of different cancer therapeutics, such as Gemcitabine (Mitotic: r = 0.706 [P = 0.01]), Paclitaxel (MYC v2: r = -0.636 [P < 0.05]), Apatinib (Mitotic: r = -0.556 [P = 0.03]), Palbociclib (E2F: r = 0.675 [P < 0.01]), and Sorafenib (G2M: r = -0.593 [P = 0.03]). Among all six pathways, only G2M was consistently associated with worse patient survival in all three cohorts. In conclusion, each cell proliferation-related pathway was predictive of a unique agent, and the G2M score alone predicts survival in pancreatic cancer.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Ankit Patel
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Lan Le
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York 14263, USA
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University1-1 Yanagido, Gifu 501-1194, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York 14263, USA
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima 960-1295, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
| |
Collapse
|
7
|
Arias-Pinilla GA, Modjtahedi H. Therapeutic Application of Monoclonal Antibodies in Pancreatic Cancer: Advances, Challenges and Future Opportunities. Cancers (Basel) 2021; 13:1781. [PMID: 33917882 PMCID: PMC8068268 DOI: 10.3390/cancers13081781] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer remains as one of the most aggressive cancer types. In the absence of reliable biomarkers for its early detection and more effective therapeutic interventions, pancreatic cancer is projected to become the second leading cause of cancer death in the Western world in the next decade. Therefore, it is essential to discover novel therapeutic targets and to develop more effective and pancreatic cancer-specific therapeutic agents. To date, 45 monoclonal antibodies (mAbs) have been approved for the treatment of patients with a wide range of cancers; however, none has yet been approved for pancreatic cancer. In this comprehensive review, we discuss the FDA approved anticancer mAb-based drugs, the results of preclinical studies and clinical trials with mAbs in pancreatic cancer and the factors contributing to the poor response to antibody therapy (e.g. tumour heterogeneity, desmoplastic stroma). MAb technology is an excellent tool for studying the complex biology of pancreatic cancer, to discover novel therapeutic targets and to develop various forms of antibody-based therapeutic agents and companion diagnostic tests for the selection of patients who are more likely to benefit from such therapy. These should result in the approval and routine use of antibody-based agents for the treatment of pancreatic cancer patients in the future.
Collapse
Affiliation(s)
- Gustavo A. Arias-Pinilla
- Department of Oncology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK;
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, Surrey KT1 2EE, UK
| | - Helmout Modjtahedi
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, Surrey KT1 2EE, UK
| |
Collapse
|
8
|
Sungwan P, Lert-itthiporn W, Silsirivanit A, Klinhom-on N, Okada S, Wongkham S, Seubwai W. Bioinformatics analysis identified CDC20 as a potential drug target for cholangiocarcinoma. PeerJ 2021; 9:e11067. [PMID: 33777535 PMCID: PMC7980698 DOI: 10.7717/peerj.11067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2020] [Accepted: 02/15/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a malignancy that originates from bile duct cells. The incidence and mortality of CCA are very high especially in Southeast Asian countries. Moreover, most CCA patients have a very poor outcome. Presently, there are still no effective treatment regimens for CCA. The resistance to several standard chemotherapy drugs occurs frequently; thus, searching for a novel effective treatment for CCA is urgently needed. METHODS In this study, comprehensive bioinformatics analyses for identification of novel target genes for CCA therapy based on three microarray gene expression profiles (GSE26566, GSE32225 and GSE76297) from the Gene Expression Omnibus (GEO) database were performed. Based on differentially expressed genes (DEGs), gene ontology and pathway enrichment analyses were performed. Protein-protein interactions (PPI) and hub gene identifications were analyzed using STRING and Cytoscape software. Then, the expression of candidate genes from bioinformatics analysis was measured in CCA cell lines using real time PCR. Finally, the anti-tumor activity of specific inhibitor against candidate genes were investigated in CCA cell lines cultured under 2-dimensional and 3-dimensional cell culture models. RESULTS The three microarray datasets exhibited an intersection consisting of 226 DEGs (124 up-regulated and 102 down-regulated genes) in CCA. DEGs were significantly enriched in cell cycle, hemostasis and metabolism pathways according to Reactome pathway analysis. In addition, 20 potential hub genes in CCA were identified using the protein-protein interaction (PPI) network and sub-PPI network analysis. Subsequently, CDC20 was identified as a potential novel targeted drug for CCA based on a drug prioritizing program. In addition, the anti-tumor activity of a potential CDC20 inhibitor, namely dinaciclib, was investigated in CCA cell lines. Dinaciclib demonstrated huge anti-tumor activity better than gemcitabine, the standard chemotherapeutic drug for CCA. CONCLUSION Using integrated bioinformatics analysis, CDC20 was identified as a novel candidate therapeutic target for CCA.
Collapse
Affiliation(s)
- Prin Sungwan
- Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | | | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nathakan Klinhom-on
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Seiji Okada
- Division of Hematopoeisis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Sopit Wongkham
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wunchana Seubwai
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|