1
|
Zhang S, Zhang X, Huang W, Jiang G, Mo Y, Wei L, Fan P, Chen M, Jiang W. NUSAP1 is Upregulated by Estrogen to Promote Lung Adenocarcinoma Growth and Serves as a Therapeutic Target. Int J Biol Sci 2024; 20:5375-5395. [PMID: 39430250 PMCID: PMC11489181 DOI: 10.7150/ijbs.100188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Nucleolar and spindle-associated protein 1 (NUSAP1), a microtubule-associated protein, has been recently identified to exhibit aberrant expression patterns that correlate with malignant tumorigenesis and progression across various cancer types. However, the specific regulatory mechanisms and potential targeting therapies of NUSAP1 in lung adenocarcinoma (LUAD) remain largely elusive. In this study, by conducting bioinformatics analyses as well as in vitro and in vivo experiments, we identified that NUSAP1 was significantly upregulated in LUAD, with a notable correlation with poorer overall survival, higher scores for immunogenicity and immune infiltration, as well as increased sensitivity to conventional chemotherapeutic drugs such as paclitaxel, docetaxel and vinorelbine in LUAD. Functionally, NUSAP1 overexpression significantly promoted LUAD cell proliferation, while its knockdown markedly suppressed this process. Interestingly, our results revealed that NUSAP1 upregulation was mediated by estrogen via ERβ activation. Furthermore, we identified entinostat as a novel inhibitor of NUSAP1. Pharmacological targeting ERβ/NUSAP1 axis with fulvestrant (ERβ antagonist) or entinostat (novel NUSAP1 inhibitor) significantly reduced LUAD growth both in vitro and in vivo, which may represent effective alternative therapeutic strategies for patients with LUAD.
Collapse
Affiliation(s)
- Shaoping Zhang
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Xiaozhen Zhang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Wenjian Huang
- Department of Breast Surgery, the Sixth Affiliated Hospital of South China University of Technology, the Sixth Clinical College of South China University of Technology, Foshan 528225, China
| | - Ganling Jiang
- Department of pharmacy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510145, China
| | - Yuanxin Mo
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Liuxia Wei
- Department of Medical Oncology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Pingming Fan
- Department of Breast Surgery, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
| | - Maojian Chen
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wei Jiang
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| |
Collapse
|
2
|
Ge Y, Wang B, Xiao J, Wu H, Shao Q. NUSAP1 promotes gastric cancer radioresistance by inhibiting ubiquitination of ANXA2 and is suppressed by miR-129-5p. J Cancer Res Clin Oncol 2024; 150:406. [PMID: 39212774 PMCID: PMC11364566 DOI: 10.1007/s00432-024-05927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Radiotherapy is an important strategy for the treatment of advanced gastric cancer (GC), while the radioresistance limits its effectiveness. Nucleolar and spindle associated protein 1 (NUSAP1) was implicated in cancer progression and chemoresistance. However, the underlying mechanisms of NUSAP1 influencing GC radioresistance remain largely unknown. METHODS Meta-analysis was conducted to systematically evaluate the prognostic value of NUSAP1 in human cancers. Gene set enrichment analysis (GSEA) was conducted using The Cancer Genome Atlas (TCGA) and gene expression omnibus (GEO) datasets. MRNA and protein expressions were detected by qRT-PCR and western blot, respectively. The radiosensitivity of GC cells was observed by colony formation, flow cytometry, comet, immunofluorescence, and animal assays. Immunoprecipitation assay and mass spectrometry were utilized to identify protein associations. MiRNAs binding with NUSAP1 were determined by starbase prediction, luciferase reporter, and RNA immunoprecipitation (RIP) assays. RESULTS NUSAP1 high expression predicted worse overall survival (OS) and disease-free survival (DFS) with no statistical heterogeneity through the meta-analysis. Downregulation of NUSAP1 significantly increased GC radiosensitivity by inhibiting colony formation, DNA damage repair, and promoting apoptosis following irradiation. Additionally, NUSAP1 silencing combined with radiation resulted in a synergistic anti-tumor effect in xenograft mouse model. Mechanistically, NUSAP1 interacted with ANXA2, protecting it against protein degradation via impeding its ubiquitination process. NUSAP1 was confirmed as a target of miR-129-5p and negatively regulated by it. CONCLUSION Our results suggested that NUSAP1 enhanced the radioresistance of GC cells. NUSAP1 could be a promising target to increase GC radiosensitivity.
Collapse
Affiliation(s)
- Yugang Ge
- Department of General Surgery, Jiangyin People's Hospital, The Affiliated Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, Jiangsu Province, China
| | - Biao Wang
- Department of Oncology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Jian Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongshuai Wu
- Wuxi Key Laboratory of Biomaterials for Clinical Application, Department of Central Laboratory, Jiangyin Clinical College of Xuzhou Medical University, Wuxi, China
| | - Qing Shao
- Department of General Surgery, Jiangyin People's Hospital, The Affiliated Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, Jiangsu Province, China.
| |
Collapse
|
3
|
El-Hussieny M, Thabet DM, Tawfik HM, Gayyed MF, Toni ND. The Overexpression of NUSAP1 and GTSE1 Could Predict An Unfavourable Prognosis and Shorter Disease Free Survival in ccRenal Cell Carcinoma. Asian Pac J Cancer Prev 2024; 25:2551-2559. [PMID: 39068590 PMCID: PMC11480612 DOI: 10.31557/apjcp.2024.25.7.2551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Although it has been reported that NUSAP1 and GTSE1 are highly expressed in different types of tumors and associated with malignant progression and poor clinical prognosis, their significances with clinicopathological data and correlations with patients' survival in ccRCC are still poorly understood. Therefore, in our study we attempted to evaluate the link between NUSAP1 and GTSE1 in ccRCC and to correlate their immunoexpression with clinico-pathological parameters and the patients' survival to identify their significance as potential therapeutic targets, indicators for tumor progression, and patients' prognosis. METHOD NUSAP1 and GTSE1 were examined in 100 ccRCC patients by immunohistochemistry. The association between NUSAP1 and GTSE1 immunoreactivity and clinicopathological variables were evaluated. The disease free survival (DFS) was examined by the Kaplan-Meier method. The multivariate Cox regressions was estimated to detect the prognostic role of both proteins. RESULTS We detected high NUSAP1 and GTSE1 expression in 60% and 62% of the cases, respectively. A significant association was detected between NUSAP1 and GTSE1 immunoexpression and size (p=0.007 and p=0.026, respectively), Fuhrman grade (p=0.022 and p=0.004, respectively), tumor stage (p=0.003 and p=0.019, respectively), TILs (p=0.026 and p=0.04 respectively), capsular invasion (p=0.002 and p=0.009, respectively), Distant metastasis (p=0.007 and p=0.009, respectively), and DFS (p=0.007 and 0.009, respectively). Multivariate Cox regression showed that high NUSAP1 and GTSE1 expression levels were independently associated with an unfavourable poor prognosis of ccRCC cases. CONCLUSION We demonstrated that NUSAP1 and GTSE1 overexpression was closely related to the poor prognostic clinicopathological features of ccRCC and predicted an unfavorable prognosis. Therefore, NUSAP1 and GTSE1 might act together as potential futuristic prognostic indicators and therapeutic targets for ccRCC patients. However, further analysis in molecular studies on larger scale are mandatory to highlight the interactive crosstalk regulatory mechanisms between both markers and their combined effect on ccRCC.
Collapse
Affiliation(s)
| | - Dalia M. Thabet
- Department of Pathology, Faculty of Medicine, Minia University 61511, El-Minia, Egypt.
| | | | | | | |
Collapse
|
4
|
Li Q, Fang J, Liu K, Luo P, Wang X. Multi-omic validation of the cuproptosis-sphingolipid metabolism network: modulating the immune landscape in osteosarcoma. Front Immunol 2024; 15:1424806. [PMID: 38983852 PMCID: PMC11231095 DOI: 10.3389/fimmu.2024.1424806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Background The current understanding of the mechanisms by which metal ion metabolism promotes the progression and drug resistance of osteosarcoma remains incomplete. This study aims to elucidate the key roles and mechanisms of genes involved in cuproptosis-related sphingolipid metabolism (cuproptosis-SPGs) in regulating the immune landscape, tumor metastasis, and drug resistance in osteosarcoma cells. Methods This study employed multi-omics approaches to assess the impact of cuproptosis-SPGs on the prognosis of osteosarcoma patients. Lasso regression analysis was utilized to construct a prognostic model, while multivariate regression analysis was applied to identify key core genes and generate risk coefficients for these genes, thereby calculating a risk score for each osteosarcoma patient. Patients were then stratified into high-risk and low-risk groups based on their risk scores. The ESTIMATE and CIBERSORT algorithms were used to analyze the level of immune cell infiltration within these risk groups to construct the immune landscape. Single-cell analysis was conducted to provide a more precise depiction of the expression patterns of cuproptosis-SPGs among immune cell subtypes. Finally, experiments on osteosarcoma cells were performed to validate the role of the cuproptosis-sphingolipid signaling network in regulating cell migration and apoptosis. Results In this study, seven cuproptosis-SPGs were identified and used to construct a prognostic model for osteosarcoma patients. In addition to predicting survival, the model also demonstrated reliability in forecasting the response to chemotherapy drugs. The results showed that a high cuproptosis-sphingolipid metabolism score was closely associated with reduced CD8 T cell infiltration and indicated poor prognosis in osteosarcoma patients. Cellular functional assays revealed that cuproptosis-SPGs regulated the LC3B/ERK signaling pathway, thereby triggering cell death and impairing migration capabilities in osteosarcoma cells. Conclusion The impact of cuproptosis-related sphingolipid metabolism on the survival and migration of osteosarcoma cells, as well as on CD8 T cell infiltration, highlights the potential of targeting copper ion metabolism as a promising strategy for osteosarcoma patients.
Collapse
Affiliation(s)
- Qingbiao Li
- Department of Orthopedics, Southern Medical University Pingshan Hospital (Pingshan District Peoples’ Hospital of Shenzhen), Shenzhen, Guangdong, China
| | - Jiarui Fang
- Department of Sport Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Kai Liu
- Department of Sport Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Peng Luo
- Department of Sport Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Xiuzhuo Wang
- Department of Orthopedics, Southern Medical University Pingshan Hospital (Pingshan District Peoples’ Hospital of Shenzhen), Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Wen X, Hou J, Qi T, Cheng X, Liao G, Fang S, Xiao S, Qiu L, Wei W. Anoikis resistance regulates immune infiltration and drug sensitivity in clear-cell renal cell carcinoma: insights from multi omics, single cell analysis and in vitro experiment. Front Immunol 2024; 15:1427475. [PMID: 38953023 PMCID: PMC11215044 DOI: 10.3389/fimmu.2024.1427475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Background Anoikis is a form of programmed cell death essential for preventing cancer metastasis. In some solid cancer, anoikis resistance can facilitate tumor progression. However, this phenomenon is underexplored in clear-cell renal cell carcinoma (ccRCC). Methods Using SVM machine learning, we identified core anoikis-related genes (ARGs) from ccRCC patient transcriptomic data. A LASSO Cox regression model stratified patients into risk groups, informing a prognostic model. GSVA and ssGSEA assessed immune infiltration, and single-cell analysis examined ARG expression across immune cells. Quantitative PCR and immunohistochemistry validated ARG expression differences between immune therapy responders and non-responders in ccRCC. Results ARGs such as CCND1, CDKN3, PLK1, and BID were key in predicting ccRCC outcomes, linking higher risk with increased Treg infiltration and reduced M1 macrophage presence, indicating an immunosuppressive environment facilitated by anoikis resistance. Single-cell insights showed ARG enrichment in Tregs and dendritic cells, affecting immune checkpoints. Immunohistochemical analysis reveals that ARGs protein expression is markedly elevated in ccRCC tissues responsive to immunotherapy. Conclusion This study establishes a novel anoikis resistance gene signature that predicts survival and immunotherapy response in ccRCC, suggesting that manipulating the immune environment through these ARGs could improve therapeutic strategies and prognostication in ccRCC.
Collapse
MESH Headings
- Humans
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/drug therapy
- Anoikis/drug effects
- Kidney Neoplasms/immunology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Single-Cell Analysis
- Prognosis
- Gene Expression Regulation, Neoplastic
- Drug Resistance, Neoplasm/genetics
- Tumor Microenvironment/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Transcriptome
- Cell Line, Tumor
- Biomarkers, Tumor/genetics
- T-Lymphocytes, Regulatory/immunology
- Gene Expression Profiling
- Male
- Multiomics
Collapse
Affiliation(s)
- Xiangyang Wen
- The Department of Surgery, Shenzhen Longgang Second People’s Hospital, Shenzhen, China
| | - Jian Hou
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Tiantian Qi
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaobao Cheng
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Guoqiang Liao
- The Department of Surgery, Shenzhen Longgang Second People’s Hospital, Shenzhen, China
| | - Shaohong Fang
- The Department of Surgery, Shenzhen Longgang Second People’s Hospital, Shenzhen, China
| | - Song Xiao
- The Department of Surgery, Shenzhen Longgang Second People’s Hospital, Shenzhen, China
| | - Longlong Qiu
- The Department of Surgery, Shenzhen Longgang Second People’s Hospital, Shenzhen, China
| | - Wanqing Wei
- Department of Urology, Lianshui People’s Hospital of Kangda College Affiliated to Nanjing Medical University, Huaian, China
| |
Collapse
|
6
|
Zhang Z, Westover D, Tang Z, Liu Y, Sun J, Sun Y, Zhang R, Wang X, Zhou S, Hesilaiti N, Xia Q, Du Z. Wnt/β-catenin signaling in the development and therapeutic resistance of non-small cell lung cancer. J Transl Med 2024; 22:565. [PMID: 38872189 PMCID: PMC11170811 DOI: 10.1186/s12967-024-05380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Wnt/β-catenin signaling is a critical pathway that influences development and therapeutic response of non-small cell lung cancer (NSCLC). In recent years, many Wnt regulators, including proteins, miRNAs, lncRNAs, and circRNAs, have been found to promote or inhibit signaling by acting on Wnt proteins, receptors, signal transducers and transcriptional effectors. The identification of these regulators and their underlying molecular mechanisms provides important implications for how to target this pathway therapeutically. In this review, we summarize recent studies of Wnt regulators in the development and therapeutic response of NSCLC.
Collapse
Affiliation(s)
- Zixu Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - David Westover
- High-Throughput Analytics, Analytical Research and Development, Merck & Co. Inc., Rahway, NJ, USA
| | - Zhantong Tang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Yue Liu
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Jinghan Sun
- School of Life Science and Technology, Southeast University, Nanjing, 210018, China
| | - Yunxi Sun
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Runqing Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Xingyue Wang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Shihui Zhou
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Nigaerayi Hesilaiti
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Qi Xia
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Zhenfang Du
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China.
| |
Collapse
|
7
|
YE G, ZHANG Z, LI Y, GAO L, HUANG W, LING B. [Expression of MEF2D in Lung Adenocarcinoma and Its Correlation with Prognosis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:538-544. [PMID: 37653017 PMCID: PMC10476217 DOI: 10.3779/j.issn.1009-3419.2023.102.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Myocyte enhancer factor 2D (MEF2D) can participate in the process of tumor lesions by regulating the transcription of oncogenes. In a previous study, MEF2D was demonstrated to enhance the proliferation and metastasis of lung adenocarcinoma cells A549 and H1299 by promoting the transcription of NUSAP1. The research aimed to explore the expression level and clinical significance of MEF2D in lung adenocarcinoma. METHODS A total of 199 patients with lung adenocarcinoma were collected. Immunohistochemical staining was used to detect MEF2D expression levels in cancer and adjacent tissues. After the clinical and follow-up data were collated, the correlation between MEF2D expression level and clinical characteristics and prognosis of the patients was analyzed. RESULTS In the lung adenocarcinoma, the high expression rate of MEF2D in cancer tissues was significantly higher than that in adjacent tissues (P<0.05). According to immunohistochemical score, MEF2D expression level in lung adenocarcinoma tissues was correlated with tumor differentiation, N stage, M stage and intrapulmonary metastasis (P<0.05). Kaplan-Meier analysis showed that patients with low MEF2D expression had significantly better prognosis than patients with high MEF2D expression (P<0.05). Cox multivariate analysis showed that MEF2D expression level, M stage, N stage and bone metastasis of lung cancer were independent risk factors for prognosis of lung adenocarcinoma patients. CONCLUSIONS MEF2D expression level is closely related to the metastasis of lung adenocarcinoma and other clinical characteristics, and can be used as an independent risk factor for the prognosis of patients with lung adenocarcinoma, which has the potential to be developed as a clinical diagnosis and treatment target of lung adenocarcinoma.
Collapse
|
8
|
Chiu CL, Li CG, Verschueren E, Wen RM, Zhang D, Gordon CA, Zhao H, Giaccia AJ, Brooks JD. NUSAP1 Binds ILF2 to Modulate R-Loop Accumulation and DNA Damage in Prostate Cancer. Int J Mol Sci 2023; 24:6258. [PMID: 37047232 PMCID: PMC10093842 DOI: 10.3390/ijms24076258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Increased expression of NUSAP1 has been identified as a robust prognostic biomarker in prostate cancer and other malignancies. We have previously shown that NUSAP1 is positively regulated by E2F1 and promotes cancer invasion and metastasis. To further understand the biological function of NUSAP1, we used affinity purification and mass spectrometry proteomic analysis to identify NUSAP1 interactors. We identified 85 unique proteins in the NUSAP1 interactome, including ILF2, DHX9, and other RNA-binding proteins. Using proteomic approaches, we uncovered a function for NUSAP1 in maintaining R-loops and in DNA damage response through its interaction with ILF2. Co-immunoprecipitation and colocalization using confocal microscopy verified the interactions of NUSAP1 with ILF2 and DHX9, and RNA/DNA hybrids. We showed that the microtubule and charged helical domains of NUSAP1 were necessary for the protein-protein interactions. Depletion of ILF2 alone further increased camptothecin-induced R-loop accumulation and DNA damage, and NUSAP1 depletion abolished this effect. In human prostate adenocarcinoma, NUSAP1 and ILF2 mRNA expression levels are positively correlated, elevated, and associated with poor clinical outcomes. Our study identifies a novel role for NUSAP1 in regulating R-loop formation and accumulation in response to DNA damage through its interactions with ILF2 and hence provides a potential therapeutic target.
Collapse
Affiliation(s)
- Chun-Lung Chiu
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caiyun G. Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erik Verschueren
- ULUA Besloten Vennootschap, Arendstraat 29, 2018 Antwerpen, Belgium
| | - Ru M. Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dalin Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catherine A. Gordon
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amato J. Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Medical Research Council/Cancer Research United Kingdom Oxford Institute for Radiation Oncology and Gray Laboratory, University of Oxford, Oxford OX3 7DQ, UK
| | - James D. Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Huang X, Su B, Wang X, Zhou Y, He X, Liu B. A network-based dynamic criterion for identifying prediction and early diagnosis biomarkers of complex diseases. J Bioinform Comput Biol 2022; 20:2250027. [PMID: 36573886 DOI: 10.1142/s0219720022500275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lung adenocarcinoma (LUAD) seriously threatens human health and generally results from dysfunction of relevant module molecules, which dynamically change with time and conditions, rather than that of an individual molecule. In this study, a novel network construction algorithm for identifying early warning network signals (IEWNS) is proposed for improving the performance of LUAD early diagnosis. To this end, we theoretically derived a dynamic criterion, namely, the relationship of variation (RV), to construct dynamic networks. RV infers correlation [Formula: see text] statistics to measure dynamic changes in molecular relationships during the process of disease development. Based on the dynamic networks constructed by IEWNS, network warning signals used to represent the occurrence of LUAD deterioration can be defined without human intervention. IEWNS was employed to perform a comprehensive analysis of gene expression profiles of LUAD from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. The experimental results suggest that the potential biomarkers selected by IEWNS can facilitate a better understanding of pathogenetic mechanisms and help to achieve effective early diagnosis of LUAD. In conclusion, IEWNS provides novel insight into the initiation and progression of LUAD and helps to define prospective biomarkers for assessing disease deterioration.
Collapse
Affiliation(s)
- Xin Huang
- School of Mathematics and Information Science, Anshan Normal University, Anshan, Liaoning 114007, P. R. China
| | - Benzhe Su
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Xingyu Wang
- School of Mathematics and Information Science, Anshan Normal University, Anshan, Liaoning 114007, P. R. China
| | - Yang Zhou
- Liaoning Clinical Research Center for Lung Cancer, The Second Hospital of Dalian Medical University Dalian, Liaoning 116023, P. R. China
| | - Xinyu He
- School of Computer and Information Technology, Liaoning Normal University, Dalian, Liaoning 116029, P. R. China
| | - Bing Liu
- School of Mathematics and Information Science, Anshan Normal University, Anshan, Liaoning 114007, P. R. China
| |
Collapse
|
10
|
Guan X, Peng Q, Wang J. Sevoflurane activates MEF2D-mediated Wnt/β-catenin signaling pathway via microRNA-374b-5p to affect renal ischemia/reperfusion injury. Immunopharmacol Immunotoxicol 2022; 44:603-612. [PMID: 35481398 DOI: 10.1080/08923973.2022.2071723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The inhaled sevoflurane (Sev) has been demonstrated to protect multiple organs against ischemia/reperfusion injury (IRI). However, the mechanisms of Sev in renal IRI remain largely unknown. This study intends to explore the effect of Sev on renal IRI and the molecular mechanism behind. METHODS Following Sev preconditioning, a mouse model with renal IRI was established. The effects of Sev on IRI in mice were assessed by BUN, Scr, MDA and SOD kits, Western blot, HE staining, and TUNEL. Subsequently, we performed microarray analysis on renal tissues from mice with Sev to identify differentially expressed microRNAs (miRNAs). Then, the mice were treated with agomiR-374b-5p combined with Sev to observe the renal histopathology after IRI. The targeting mRNA of miR-374b-5p was verified using bioinformatics analysis and dual-luciferase assay, followed by KEGG enrichment analysis. Rescue experiments were implemented with simultaneous miR-374b-5p and MEF2D overexpression to detect renal histopathology and Wnt/β-catenin pathway activity in the mice. RESULTS Sev significantly reduced the levels of BUN and Scr in mouse serum, prevented cell apoptosis, decreased MDA content and increased SOD levels in renal tissues. Moreover, Sev downregulated the miR-374b-5p expression in the renal tissues. Overexpression of miR-374b-5p attenuated the protective effects of Sev on mouse renal tissues. miR-374b-5p targeted MEF2D and blocked the Wnt/β-catenin pathway. Overexpression of MEF2D activated the Wnt/β-catenin pathway and attenuated the supporting effects of miR-374b-5p on renal IRI. CONCLUSION Sev promotes MEF2D and activates the Wnt/β-catenin pathway through inhibition of miR-374b-5p expression to affect renal IRI.
Collapse
Affiliation(s)
- Xiaohong Guan
- Department of Anesthesiology, The First Hospital of Changsha, Hunan, P.R. China
| | - Qingxiong Peng
- Department of Anesthesiology, The First Hospital of Changsha, Hunan, P.R. China
| | - Jiansong Wang
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan, P.R. China
| |
Collapse
|
11
|
Guo X, Li Y, Che X, Hou K, Qu X, Li C. microRNA-569 inhibits tumor metastasis in pancreatic cancer by directly targeting NUSAP1. Aging (Albany NY) 2022; 14:3652-3665. [PMID: 35483343 PMCID: PMC9085231 DOI: 10.18632/aging.204035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) are known to be involved in the development and progression of pancreatic cancer (PC). In this study, the prognostic significance and mechanistic role of microRNA-569 in PC were explored. Quantitative real-time PCR was used to detect the expression of microRNA-569 in PC tissues and cell lines. Scratch test and Transwell assay were conducted to detect migration and invasion ability. The xenograft nude mice model was used to determine tumor metastasis in vivo. The direct targets of microRNA-569 were determined by using bioinformatics analysis and a dual-luciferase reporter assay. The expression level of microRNA-569 was down-regulated in PC patients with a poor prognosis. In vitro and in vivo experiments indicated that over-expression of microRNA-569 inhibited the migration and invasion of PC cells. MicroRNA-569 negatively regulated NUSAP1 by directly binding its 3'-untranslated region. Further mechanism research implied that the ZEB1 pathway was involved in microRNA-569/NUSAP1 mediation of the biological behaviors in PC. These data demonstrated that microRNA-569 may exert a tumor-suppressing effect in PC and maybe a potential therapeutic target for PC patients.
Collapse
Affiliation(s)
- Xiaohui Guo
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yatian Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|