1
|
Vučemilović A. Exosomes: intriguing mediators of intercellular communication in the organism's response to noxious agents. Arh Hig Rada Toksikol 2024; 75:228-239. [PMID: 39718095 DOI: 10.2478/aiht-2024-75-3923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Exosomes are small extracellular vesicles that range from 30 to 150 nm in size and are formed through cellular endocytosis. They consist of proteins, lipids, and nucleic acids at varying ratios and quantities. The composition and spatiotemporal dynamics of exosomes suggest that they play a crucial role in intercellular communication. The information conveyed by exosomes significantly impacts the regulation of health and disease states in the organism. The term "noxious" refers to all harmful environmental agents and conditions that can disrupt the physiological equilibrium and induce pathological states, regardless whether of radiological, biological, or chemical origin. This review comprehensively examines the presence of such noxious agents within the organism in relation to exosome formation and function. Furthermore, it explores the cause-effect relationship between noxious agents and exosomes, aiming to restore physiological homeostasis and prepare the organism for defence against harmful agents. Regardless of the specific bioinformatic content associated with each noxious agent, synthesis of data on the interactions between various types of noxious agents and exosomes reveals that an organized defence against these agents is unachievable without the support of exosomes. Consequently, exosomes are identified as the primary communication and information system within an organism, with their content being pivotal in maintaining the health-disease balance.
Collapse
|
2
|
Fujimura T, Furugaki K, Mizuta H, Muraoka S, Nishio M, Adachi J, Uchibori K, Miyauchi E, Hayashi H, Katayama R, Yoshiura S. Targeting ErbB and tankyrase1/2 prevent the emergence of drug-tolerant persister cells in ALK-positive lung cancer. NPJ Precis Oncol 2024; 8:264. [PMID: 39551860 PMCID: PMC11570601 DOI: 10.1038/s41698-024-00757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Targeting the drug tolerant persister (DTP) state in cancer cells should prevent further development of resistance mechanisms. This study explored combination therapies to inhibit alectinib-induced DTP cell formation from anaplastic lymphoma kinase-positive non-small cell lung cancer (ALK + NSCLC) patient-derived cells. After drug-screening 3114 compounds, pan-HER inhibitors (ErbB pathway) and tankyrase1/2 inhibitors (Wnt/β-catenin signaling) emerged as top candidates to inhibit alectinib-induced DTP cells growth. We confirmed knockdown of both TNKS1/2 in DTP cells recovered the sensitivity to alectinib. Further, our study suggested knockdown of TNKS1/2 increased stability of Axin1/2, which induced β-catenin degradation and decreased its nuclear translocation, thereby suppressing transcription of antiapoptotic and proliferation-related genes (survivin, c-MYC). Targeting both pathways with alectinib+pan-HER inhibitor and alectinib+TNKS1/2 inhibitor suppressed alectinib-induced DTP cells, and the triple combination almost completely prevented the appearance of DTP cells. In conclusion, combination with ALK-TKI, pan-HER and TNKS1/2 inhibitors has the potential to prevent the emergence of DTP in ALK + NSCLC.
Collapse
Affiliation(s)
- Takaaki Fujimura
- Product Research Department, Chugai Pharmaceutical Co., Ltd, Yokohama, Japan
| | - Koh Furugaki
- Product Research Department, Chugai Pharmaceutical Co., Ltd, Yokohama, Japan
| | - Hayato Mizuta
- Product Research Department, Chugai Pharmaceutical Co., Ltd, Yokohama, Japan
| | - Satoshi Muraoka
- Laboratory of Proteomics for Drug Discovery, Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Makoto Nishio
- Department of Respiratory Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Ken Uchibori
- Department of Respiratory Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Eisaku Miyauchi
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Sayama, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Shigeki Yoshiura
- Product Research Department, Chugai Pharmaceutical Co., Ltd, Yokohama, Japan.
| |
Collapse
|
3
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Ge FJ, Dai XY, Qiu Y, Liu XN, Zeng CM, Xu XY, Chen YD, Zhu H, He QJ, Gai RH, Ma SL, Chen XQ, Yang B. Inflammation-related molecular signatures involved in the anticancer activities of brigatinib as well as the prognosis of EML4-ALK lung adenocarcinoma patient. Acta Pharmacol Sin 2024; 45:1252-1263. [PMID: 38360931 PMCID: PMC11130210 DOI: 10.1038/s41401-024-01230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Although ALK tyrosine kinase inhibitors (ALK-TKIs) have shown remarkable benefits in EML4-ALK positive NSCLC patients compared to conventional chemotherapy, the optimal sequence of ALK-TKIs treatment remains unclear due to the emergence of primary and acquired resistance and the lack of potential prognostic biomarkers. In this study, we systematically explored the validity of sequential ALK inhibitors (alectinib, lorlatinib, crizotinib, ceritinib and brigatinib) for a heavy-treated patient with EML4-ALK fusion via developing an in vitro and in vivo drug testing system based on patient-derived models. Based on the patient-derived models and clinical responses of the patient, we found that crizotinib might inhibit proliferation of EML4-ALK positive tumors resistant to alectinib and lorlatinib. In addition, NSCLC patients harboring the G1269A mutation, which was identified in alectinib, lorlatinib and crizotinib-resistant NSCLC, showed responsiveness to brigatinib and ceritinib. Transcriptomic analysis revealed that brigatinib suppressed the activation of multiple inflammatory signaling pathways, potentially contributing to its anti-tumor activity. Moreover, we constructed a prognostic model based on the expression of IL6, CXCL1, and CXCL5, providing novel perspectives for predicting prognosis in EML4-ALK positive NSCLC patients. In summary, our results delineate clinical responses of sequential ALK-TKIs treatments and provide insights into the mechanisms underlying the superior effects of brigatinib in patients harboring ALKG1269A mutation and resistant towards alectinib, lorlatinib and crizotinib. The molecular signatures model based on the combination of IL6, CXCL1 and CXCL5 has the potential to predict prognosis of EML4-ALK positive NSCLC patients.
Collapse
Affiliation(s)
- Fu-Jing Ge
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Yang Dai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yao Qiu
- Department of Thoracic Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Xiang-Ning Liu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen-Ming Zeng
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Xiao-Yuan Xu
- China Pharmaceutical University, Nanjing, 210009, China
| | - Yi-Dan Chen
- Department of Thoracic Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiao-Jun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Ren-Hua Gai
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Lin Ma
- Department of Thoracic Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Hospital, Hangzhou, 310002, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Xue-Qin Chen
- Department of Thoracic Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Hospital, Hangzhou, 310002, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| |
Collapse
|
5
|
Pourhajibagher M, Bahador A. Periodontal ligament stem cell-derived exosome-loaded Emodin mediated antimicrobial photodynamic therapy against cariogenic bacteria. BMC Oral Health 2024; 24:311. [PMID: 38454402 PMCID: PMC10919019 DOI: 10.1186/s12903-024-04062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND This study was conducted to investigate the efficiency of periodontal ligament (PDL) stem cell-derived exosome-loaded Emodin (Emo@PDL-Exo) in antimicrobial photodynamic therapy (aPDT) on Streptococcus mutans and Lactobacillus acidophilus as the cariogenic bacteria. MATERIALS AND METHODS After isolating and characterizing PDL-Exo, the study proceeded to prepare and verify the presence of Emo@PDL-Exo. The antimicrobial effect, anti-biofilm activity, and anti-metabolic potency of Emo, PDL-Exo, and Emo@PDL-Exo were then evaluated with and without irradiation of blue laser at a wavelength of 405 ± 10 nm with an output intensity of 150 mW/cm2 for a duration of 60 s. In addition, the study assessed the binding affinity of Emodin with GtfB and SlpA proteins using in silico molecular docking. Eventually, the study examined the generation of endogenous reactive oxygen species (ROS) and changes in the gene expression levels of gelE and sprE. RESULTS The study found that using Emo@PDL-Exo-mediated aPDT resulted in a significant decrease in L. acidophilus and S. mutans by 4.90 ± 0.36 and 5.07 log10 CFU/mL, respectively (P < 0.05). The study found that using Emo@PDL-Exo for aPDT significantly reduced L. acidophilus and S. mutans biofilms by 44.7% and 50.4%, respectively, compared to untreated biofilms in the control group (P < 0.05). Additionally, the metabolic activity of L. acidophilus and S. mutans decreased by 58.3% and 71.2%, respectively (P < 0.05). The molecular docking analysis showed strong binding affinities of Emodin with SlpA and GtfB proteins, with docking scores of -7.4 and -8.2 kcal/mol, respectively. The study also found that the aPDT using Emo@PDL-Exo group resulted in the most significant reduction in gene expression of slpA and gtfB, with a decrease of 4.2- and 5.6-folds, respectively, compared to the control group (P < 0.05), likely due to the increased generation of endogenous ROS. DISCUSSION The study showed that aPDT using Emo@PDL-Exo can effectively reduce the cell viability, biofilm activity, and metabolic potency of S. mutans and L. acidophilus. aPDT also significantly reduced the expression levels of gtfB and slpA mRNA due to the increased endogenous ROS generation. The findings suggest that Emo@PDL-Exo-mediated aPDT could be a promising antimicrobial approach against cariogenic microorganisms.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
6
|
Ekram J, Rathore A, Avila C, Hussein R, Alomar M. Unveiling the Cardiotoxicity Conundrum: Navigating the Seas of Tyrosine Kinase Inhibitor Therapies. Cancer Control 2024; 31:10732748241285755. [PMID: 39318033 PMCID: PMC11440564 DOI: 10.1177/10732748241285755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Background: Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of various solid and hematologic malignancies by targeting dysregulated signaling pathways critical for malignant cell growth. However, these therapeutic benefits are often accompanied by cardiotoxicities, such as hypertension, left ventricular dysfunction, QT prolongation, and tachyarrhythmias, among others. These cardiotoxicities post a significant challenge in clinical management, often limiting the use of otherwise effective therapies. The underlying mechanism of TKI-induced cardiotoxicity appears to be multifaceted, involving several pathways including: direct cardiomyocyte damage, mitochondrial dysfunction, endothelial damage, and disruption of signaling pathways critical for cardiac function. The range and severity of cardiotoxicities vary significantly across different TKIs, necessitating a comprehensive understanding of each agent's specific cardiovascular risk profile. Preventing and managing TKI-induced cardiotoxicity requires a comprehensive, multidisciplinary approach. Early identification of at-risk patients through baseline cardiovascular risk assessments and appropriate monitoring during therapy is crucial. Strategies to mitigate cardiotoxic effects include dose modification, the use of cardioprotective agents, and temporary discontinuation of therapy. Additionally, decision making via multidisciplinary teams ensures minimization of cardiovascular complications while also continuing effective cancer treatment. Historically, data have been limited regarding cardiotoxicity and most cancer therapies, which certainly includes TKIs. This review aims to synthesize the current body of knowledge on TKI-associated cardiotoxicities, while highlighting the importance of vigilance and proactive management to minimize cardiovascular complications.
Collapse
Affiliation(s)
- Jahanzaib Ekram
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Cardio-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Azeem Rathore
- Department of Internal Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Carlos Avila
- Department of Internal Medicine, Manatee Memorial Hospital, Bradenton, FL, USA
| | - Rahbia Hussein
- Department of Internal Medicine, Manatee Memorial Hospital, Bradenton, FL, USA
| | - Mohammed Alomar
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Cardio-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
7
|
Szatmári T, Balázs K, Csordás IB, Sáfrány G, Lumniczky K. Effect of radiotherapy on the DNA cargo and cellular uptake mechanisms of extracellular vesicles. Strahlenther Onkol 2023; 199:1191-1213. [PMID: 37347291 DOI: 10.1007/s00066-023-02098-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/01/2023] [Indexed: 06/23/2023]
Abstract
In the past decades, plenty of evidence has gathered pointing to the role of extracellular vesicles (EVs) secreted by irradiated cells in the development of radiation-induced non-targeted effects. EVs are complex natural structures composed of a phospholipid bilayer which are secreted by virtually all cells and carry bioactive molecules. They can travel certain distances in the body before being taken up by recipient cells. In this review we discuss the role and fate of EVs in tumor cells and highlight the importance of DNA specimens in EVs cargo in the context of radiotherapy. The effect of EVs depends on their cargo, which reflects physiological and pathological conditions of donor cell types, but also depends on the mode of EV uptake and mechanisms involved in the route of EV internalization. While the secretion and cargo of EVs from irradiated cells has been extensively studied in recent years, their uptake is much less understood. In this review, we will focus on recent knowledge regarding the EV uptake of cancer cells and the effect of radiation in this process.
Collapse
Affiliation(s)
- Tünde Szatmári
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary.
| | - Katalin Balázs
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Ilona Barbara Csordás
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Géza Sáfrány
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Katalin Lumniczky
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| |
Collapse
|
8
|
Wang W, Song J, Lu N, Yan J, Chen G. Sanghuangporus sanghuang extract inhibits the proliferation and invasion of lung cancer cells in vitro and in vivo. Nutr Res Pract 2023; 17:1070-1083. [PMID: 38053828 PMCID: PMC10694423 DOI: 10.4162/nrp.2023.17.6.1070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/01/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND/OBJECTIVES Sanghuangporus sanghuang (SS) has various medicinal effects, including anti-inflammation and anticancer activities. Despite the extensive research on SS, its molecular mechanisms of action on lung cancer are unclear. This study examined the impact of an SS alcohol extract (SAE) on lung cancer using in vitro and in vivo models. MATERIALS/METHODS Different concentrations of SAE were used to culture lung cancer cells (A549 and H1650). A cell counting kit-8 assay was used to detect the survival ability of A549 and H1650 cells. A scratch assay and transwell cell invasion assay were used to detect the migration rate and invasive ability of SAE. Western blot analysis was used to detect the expression of B-cell lymphoma-2 (Bcl-2), Bcl2-associated X (Bax), cyclin D1, cyclin-dependent kinases 4 (CDK4), signal transducer and activator of transcription 3 (STAT3), and phosphorylated STAT3 (p-STAT3). Lung cancer xenograft mice were used to detect the inhibiting ability of SAE in vivo. Hematoxylin and eosin staining and immunohistochemistry were used to detect the effect of SAE on the structural changes to the tumor and the expression of Bcl-2, Bax, cyclin D1, CDK4, STAT3, and p-STAT3 in lung cancer xenograft mice. RESULTS SAE could inhibit lung cancer proliferation significantly in vitro and in vivo without cytotoxicity. SAE suppressed the viability, migration, and invasion of lung cancer cells in a dose and time-dependent manner. The SAE treatment significantly decreased the proapoptotic Bcl-2/Bax ratio and the expression of pro-proliferative proteins Cyclin D1 and CDK4 in vitro and in vivo. Furthermore, SAE also inhibited STAT3 expression. CONCLUSIONS SAE reduced the cell viability and suppressed cell migration and invasion in human lung cancer cells. Moreover, SAE also exhibited anti-proliferation effects in vivo. Therefore, SAE may have benefits in cancer therapy.
Collapse
Affiliation(s)
- Weike Wang
- Institute of Vegetable Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Jiling Song
- Institute of Vegetable Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Na Lu
- Institute of Vegetable Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Jing Yan
- Institute of Vegetable Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Guanping Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| |
Collapse
|
9
|
Monti P, Solazzo G, Bollati V. Effect of environmental exposures on cancer risk: Emerging role of non-coding RNA shuttled by extracellular vesicles. ENVIRONMENT INTERNATIONAL 2023; 181:108255. [PMID: 37839267 DOI: 10.1016/j.envint.2023.108255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Environmental and lifestyle exposures have a huge impact on cancer risk; nevertheless, the biological mechanisms underlying this association remain poorly understood. Extracellular vesicles (EVs) are membrane-enclosed particles actively released by all living cells, which play a key role in intercellular communication. EVs transport a variegate cargo of biomolecules, including non-coding RNA (ncRNA), which are well-known regulators of gene expression. Once delivered to recipient cells, EV-borne ncRNAs modulate a plethora of cancer-related biological processes, including cell proliferation, differentiation, and motility. In addition, the ncRNA content of EVs can be altered in response to outer stimuli. Such changes can occur either as an active attempt to adapt to the changing environment or as an uncontrolled consequence of cell homeostasis loss. In either case, such environmentally-driven alterations in EV ncRNA might affect the complex crosstalk between malignant cells and the tumor microenvironment, thus modulating the risk of cancer initiation and progression. In this review, we summarize the current knowledge about EV ncRNAs at the interface between environmental and lifestyle determinants and cancer. In particular, we focus on the effect of smoking, air and water pollution, diet, exercise, and electromagnetic radiation. In addition, we have conducted a bioinformatic analysis to investigate the biological functions of the genes targeted by environmentally-regulated EV microRNAs. Overall, we draw a comprehensive picture of the role of EV ncRNA at the interface between external factors and cancer, which could be of great interest to the development of novel strategies for cancer prevention, diagnosis, and therapy.
Collapse
Affiliation(s)
- Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Solazzo
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; CRC, Center for Environmental Health, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
10
|
Shaikh S, Younis M, Yingying S, Tanziela T, Yuan L. Bleomycin loaded exosomes enhanced antitumor therapeutic efficacy and reduced toxicity. Life Sci 2023; 330:121977. [PMID: 37499934 DOI: 10.1016/j.lfs.2023.121977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Bleomycin (BLM) is a chemotherapeutic agent with potent antitumor activity against the tumor. However, lung fibrosis is the main drawback that limits BLM use. Tumor targeted, safe, efficient and natural delivery of BLM is important to increase the effectiveness and reduce the toxic side effects. Although tumor derived Exosomes (Exo), provide a potential vehicle for in vivo drug delivery due to their cell tropism. This study primarily focuses on generating a natural delivery platform for Exo loaded with BLM and testing its therapeutic efficacy against cancer. METHODS Exosomes were isolated from cancer cells and incubated with BLM. Exo were characterized by transmission electron microscopy, western blot analysis and nanoparticle tracking analysis. We performed in vitro and in vivo analyses to evaluate the effect of Exo-BLM. RESULTS Exosomes loaded with BLM are highly cancer targeting and cause the cytotoxicity of tumor cells by ROS. The fluorescence images showed that Exo-BLM accumulated in cancer cells. The results revealed that Exo-BLM induces tumor cell apoptosis by the caspase pathway. In vivo, the treatment of Exo-BLM showed targeted ability and enhanced the antitumor activity. CONCLUSION This study provides an avenue for specific BLM therapeutics with minimal side effects.
Collapse
Affiliation(s)
- Sana Shaikh
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Muhammad Younis
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Center for Inflammation, Immunity & Infection, Georgia State University, Institute for Biomedical Sciences, Atlanta, GA, USA
| | - Shao Yingying
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Tanziela Tanziela
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Liudi Yuan
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
11
|
Zhao M, Liu S, Xie R, Zhang J, Li J. Interstitial lung disease risk of anaplastic lymphoma kinase tyrosine kinase inhibitor treatment of non-small cell lung cancer: a real-world pharmacovigilance study. Expert Opin Drug Saf 2023; 22:1309-1316. [PMID: 37551674 DOI: 10.1080/14740338.2023.2245324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Interstitial lung disease (ILD) is a rare but life-threatening and fatal treatment-related pneumonitis. This study investigated the association between anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKIs) and ILD. RESEARCH DESIGN AND METHODS Cases of ILD that developed after treatment with an ALK-TKI in the Food and Drug Administration' s Adverse Event Reporting System (FAERS) data were assessed. We also described the clinical features of these cases and evaluated onset time, hospitalization, life-threatening condition, and fatality rate of ILD developed after treatment with an ALK-TKI. RESULTS All five ALK-TKI regimens were significantly associated with ILD. The median onset time to ILD was significantly different for brigatinib, crizotinib, alectinib, lorlatinib, and ceritinib: 4.5, 25, 35.5, 54.5, and 84 days, respectively. ALK-TKI-associated ILD resulted in hospitalization in 55.77% of patients and death or life-threatening outcomes in 43.03%. The highest and lowest proportions of ILD-related fatalities were observed after crizotinib and alectinib treatment, respectively. CONCLUSIONS ALK-TKIs were associated with ILD; therefore, the risk of developing ILD after treatment with an ALK-TKI should be carefully considered in clinical settings.
Collapse
Affiliation(s)
- Min Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Shu Liu
- Department of Pharmacy, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, China
| | - Rui Xie
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jianjun Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jiang Li
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
12
|
Parra ER, Zhang J, Jiang M, Tamegnon A, Pandurengan RK, Behrens C, Solis L, Haymaker C, Heymach JV, Moran C, Lee JJ, Gibbons D, Wistuba II. Immune cellular patterns of distribution affect outcomes of patients with non-small cell lung cancer. Nat Commun 2023; 14:2364. [PMID: 37185575 PMCID: PMC10130161 DOI: 10.1038/s41467-023-37905-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Studying the cellular geographic distribution in non-small cell lung cancer is essential to understand the roles of cell populations in this type of tumor. In this study, we characterize the spatial cellular distribution of immune cell populations using 23 makers placed in five multiplex immunofluorescence panels and their associations with clinicopathologic variables and outcomes. Our results demonstrate two cellular distribution patterns-an unmixed pattern mostly related to immunoprotective cells and a mixed pattern mostly related to immunosuppressive cells. Distance analysis shows that T-cells expressing immune checkpoints are closer to malignant cells than other cells. Combining the cellular distribution patterns with cellular distances, we can identify four groups related to inflamed and not-inflamed tumors. Cellular distribution patterns and distance are associated with survival in univariate and multivariable analyses. Spatial distribution is a tool to better understand the tumor microenvironment, predict outcomes, and may can help select therapeutic interventions.
Collapse
Affiliation(s)
- Edwin Roger Parra
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jiexin Zhang
- Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mei Jiang
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Auriole Tamegnon
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Carmen Behrens
- Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa Solis
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cara Haymaker
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Victor Heymach
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cesar Moran
- Departments of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack J Lee
- Departments of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don Gibbons
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio Ivan Wistuba
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Yeni Y, Taghizadehghalehjoughi A, Genc S, Hacimuftuoglu A, Yildirim S, Bolat I. Glioblastoma cell-derived exosomes induce cell death and oxidative stress in primary cultures of olfactory neurons. Role of redox stress. Mol Biol Rep 2023; 50:3999-4009. [PMID: 36849859 DOI: 10.1007/s11033-023-08256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/04/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Glioblastoma multiforme, described as glioblastoma, is a malignancy originating from glial progenitors in the central nervous system and is the most malignant subtype of brain tumors which attracted researcher's attention due to their high recurrence and mortality despite optimal treatments. In the study, we aimed to research whether glioblastoma-originated exosomes play a role in olfactory nerve cell toxicity. METHODS AND RESULTS For this aim, exosomes obtained from U373 and T98G cells were applied to olfactory nerve cell culture at distinct doses. Then, glutathione (GSH), lactate dehydrogenase (LDH), total antioxidant capacity (TAC), 3-(4,5-Dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT), total oxidant status (TOS) and Immunofluorescence analyzes were performed. We found that both glioblastoma-derived exosomes decreased cell viability in olfactory neurons with increasing doses. According to the obtained data, the olfactory neuron vitality rate was 71% in T98G-exosome, but the decrease in U373-exosome was more obvious (48%). In particular, the 100 µg/ml dose exacerbated oxidative stress by increasing TOS. It also increased cellular apoptosis compared to the control group due to LDH leakage. However, the results of GSH and TAS showed that antioxidant levels were significantly reduced. CONCLUSION In the microenvironment of olfactory neurons, GBM-derived exosomes increased oxidative stress-induced toxicity by reducing TAC and GSH levels. Therefore, glioblastoma cells by induction of exosome-based stress support malignant growth.
Collapse
Affiliation(s)
- Yesim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Malatya Turgut Ozal University, 44210, Malatya, Turkey
| | - Ali Taghizadehghalehjoughi
- Faculty of Medicine, Department of Medical Pharmacology, Bilecik Seyh Edebali University, 11230, Bilecik, Turkey.
| | - Sidika Genc
- Faculty of Medicine, Department of Medical Pharmacology, Bilecik Seyh Edebali University, 11230, Bilecik, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
14
|
Hara D, Tao W, Schmidt RM, Yang YP, Daunert S, Dogan N, Ford JC, Pollack A, Shi J. Boosted Radiation Bystander Effect of PSMA-Targeted Gold Nanoparticles in Prostate Cancer Radiosensitization. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4440. [PMID: 36558293 PMCID: PMC9784958 DOI: 10.3390/nano12244440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Metal nanoparticles are effective radiosensitizers that locally enhance radiation doses in targeted cancer cells. Compared with other metal nanoparticles, gold nanoparticles (GNPs) exhibit high biocompatibility, low toxicity, and they increase secondary electron scatter. Herein, we investigated the effects of active-targeting GNPs on the radiation-induced bystander effect (RIBE) in prostate cancer cells. The impact of GNPs on the RIBE presents implications for secondary cancers or spatially fractionated radiotherapy treatments. Anti-prostate-specific membrane antigen (PSMA) antibodies were conjugated with PEGylated GNPs through EDC-NHS chemistry. The media transfer technique was performed to induce the RIBE on the non-irradiated bystander cells. This study focused on the LNCaP cell line, because it can model a wide range of stages relating to prostate cancer progression, including the transition from androgen dependence to castration resistance and bone metastasis. First, LNCaP cells were pretreated with phosphate buffered saline (PBS) or PSMA-targeted GNPs (PGNPs) for 24 h and irradiated with 160 kVp X-rays (0-8 Gy). Following that, the collected culture media were filtered (sterile 0.45 µm polyethersulfone) in order to acquire PBS- and PGNP- conditioned media (CM). Then, PBS- and PGNP-CM were transferred to the bystander cells that were loaded with/without PGNPs. MTT, γ-H2AX, clonogenic assays and reactive oxygen species assessments were performed to compare RIBE responses under different treatments. Compared with 2 Gy-PBS-CM, 8 Gy-PBS-CM demonstrated a much higher RIBE response, thus validating the dose dependence of RIBE in LNCaP cells. Compared with PBS-CM, PGNP-CM exhibited lower cell viability, higher DNA damage, and a smaller survival fraction. In the presence of PBS-CM, bystander cells loaded with PGNPs showed increased cell death compared with cells that did not have PGNPs. These results demonstrate the PGNP-boosted expression and sensitivity of RIBE in prostate cancer cells.
Collapse
Affiliation(s)
- Daiki Hara
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, FL 33146, USA
| | - Wensi Tao
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ryder M. Schmidt
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, FL 33146, USA
| | - Yu-Ping Yang
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sylvia Daunert
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Nesrin Dogan
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, FL 33146, USA
| | - John Chetley Ford
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, FL 33146, USA
| | - Alan Pollack
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Junwei Shi
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
15
|
Pazzaglia S, Eidemüller M, Lumniczky K, Mancuso M, Ramadan R, Stolarczyk L, Moertl S. Out-of-field effects: lessons learned from partial body exposure. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:485-504. [PMID: 36001144 PMCID: PMC9722818 DOI: 10.1007/s00411-022-00988-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/03/2022] [Indexed: 05/27/2023]
Abstract
Partial body exposure and inhomogeneous dose delivery are features of the majority of medical and occupational exposure situations. However, mounting evidence indicates that the effects of partial body exposure are not limited to the irradiated area but also have systemic effects that are propagated outside the irradiated field. It was the aim of the "Partial body exposure" session within the MELODI workshop 2020 to discuss recent developments and insights into this field by covering clinical, epidemiological, dosimetric as well as mechanistic aspects. Especially the impact of out-of-field effects on dysfunctions of immune cells, cardiovascular diseases and effects on the brain were debated. The presentations at the workshop acknowledged the relevance of out-of-field effects as components of the cellular and organismal radiation response. Furthermore, their importance for the understanding of radiation-induced pathologies, for the discovery of early disease biomarkers and for the identification of high-risk organs after inhomogeneous exposure was emphasized. With the rapid advancement of clinical treatment modalities, including new dose rates and distributions a better understanding of individual health risk is urgently needed. To achieve this, a deeper mechanistic understanding of out-of-field effects in close connection to improved modelling was suggested as priorities for future research. This will support the amelioration of risk models and the personalization of risk assessments for cancer and non-cancer effects after partial body irradiation.
Collapse
Affiliation(s)
- S. Pazzaglia
- Laboratory of Biomedical Technologies, ENEA CR-Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | - M. Eidemüller
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - K. Lumniczky
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, Albert Florian u. 2-6, 1097 Budapest, Hungary
| | - M. Mancuso
- Laboratory of Biomedical Technologies, ENEA CR-Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | - R. Ramadan
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - L. Stolarczyk
- Danish Centre for Particle Therapy, Palle Juul-Jensens Boulevard 25, 8200 Aarhus N, Denmark
| | - S. Moertl
- Federal Office for Radiation Protection, Ingolstädter Landstr. 1, 85764 Oberschleißheim, Germany
| |
Collapse
|
16
|
Ocolotobiche EE, Banegas YC, Ferraris G, Martínez M, Güerci AM. Cellular bases of hypofractionated radiotherapy protocols for lung cancer. AN ACAD BRAS CIENC 2022; 94:e20210056. [PMID: 35894359 DOI: 10.1590/0001-3765202220210056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/30/2021] [Indexed: 11/21/2022] Open
Abstract
The extreme demand on health systems due to the COVID-19 pandemic has led to reconsider hypofractionation. Although the best clinical efficacy of these schemes is being demonstrated, the biological bases have not been established. Thus, after validating basic clinical parameters, through complementary in vitro models, we characterized the cellular and molecular mechanisms of hypofractionation protocols. Cell cultures of human lung cancer cell line A549 were irradiated with 0, 2, 4, 8, 12, 16 and 20 Gy. The clastogenic, cytotoxic, proliferative and clonogenic capacities and bystander effect were evaluated. In addition, we assessed survival and toxicity in a retrospective study of 49 patients with lung cancer. Our findings showed that the greater efficacy of ablative regimens should not only be attributed to events of direct cell death induced by genotoxic damage, but also to a lower cell repopulation and the indirect action of clastogenic factors secreted. These treatments were optimal in terms of 1- and 2-year overall survival (74 and 65%, respectively), and progression-free survival at 1 and 2 years (71 and 61%, respectively). The greater efficacy of high doses per fraction could be attributed to a multifactorial mechanism that goes beyond the 4Rs of conventional radiotherapy.
Collapse
Affiliation(s)
- Eliana Evelina Ocolotobiche
- Universidad Nacional de La Plata, IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina.,Universidad Nacional de La Plata, Facultad de Ciencias Exactas, Calle 47 y 115 s/n, CP 1900, La Plata, Buenos Aires, Argentina.,Terapia Radiante S.A. Red CIO, La Plata, Calle 60, Nº 480, CP 1900, La Plata, Buenos Aires, Argentina
| | - Yuliana Catalina Banegas
- Universidad Nacional de La Plata, IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina.,Terapia Radiante S.A. Red CIO, La Plata, Calle 60, Nº 480, CP 1900, La Plata, Buenos Aires, Argentina
| | - Gustavo Ferraris
- Centro Médico Dean Funes, Calle Deán Funes, Nº 2869, CP 5003, Córdoba, Argentina
| | - Marcelo Martínez
- Terapia Radiante S.A. Red CIO, La Plata, Calle 60, Nº 480, CP 1900, La Plata, Buenos Aires, Argentina
| | - Alba Mabel Güerci
- Universidad Nacional de La Plata, IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina.,Universidad Nacional de La Plata, Facultad de Ciencias Exactas, Calle 47 y 115 s/n, CP 1900, La Plata, Buenos Aires, Argentina.,Terapia Radiante S.A. Red CIO, La Plata, Calle 60, Nº 480, CP 1900, La Plata, Buenos Aires, Argentina
| |
Collapse
|
17
|
Liu Z, Zhou K, Zeng J, Zhou X, Li H, Peng K, Liu X, Feng F, Jiang B, Zhao M, Ma T. Liver kinase B1 in exosomes inhibits immune checkpoint programmed death ligand 1 and metastatic progression of intrahepatic cholangiocarcinoma. Oncol Rep 2022; 48:155. [PMID: 35856436 PMCID: PMC9350976 DOI: 10.3892/or.2022.8367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/27/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhuo Liu
- Third Department of General Surgery, The Central Hospital of Xiangtan, Xiangtan, Hunan 411100, P.R. China
| | - Kunyan Zhou
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, D‑30159 Hannover, Germany
| | - Jian Zeng
- Third Department of General Surgery, The Central Hospital of Xiangtan, Xiangtan, Hunan 411100, P.R. China
| | - Xin Zhou
- Third Department of General Surgery, The Central Hospital of Xiangtan, Xiangtan, Hunan 411100, P.R. China
| | - Huanyu Li
- Third Department of General Surgery, The Central Hospital of Xiangtan, Xiangtan, Hunan 411100, P.R. China
| | - Ke Peng
- Scientific Research Department, The Central Hospital of Xiangtan, Xiangtan, Hunan 411100, P.R. China
| | - Xiang Liu
- Third Department of General Surgery, The Central Hospital of Xiangtan, Xiangtan, Hunan 411100, P.R. China
| | - Feng Feng
- Third Department of General Surgery, The Central Hospital of Xiangtan, Xiangtan, Hunan 411100, P.R. China
| | - Bin Jiang
- Third Department of General Surgery, The Central Hospital of Xiangtan, Xiangtan, Hunan 411100, P.R. China
| | - Ming Zhao
- Third Department of General Surgery, The Central Hospital of Xiangtan, Xiangtan, Hunan 411100, P.R. China
| | - Tiexiang Ma
- Third Department of General Surgery, The Central Hospital of Xiangtan, Xiangtan, Hunan 411100, P.R. China
| |
Collapse
|
18
|
Buonanno M, Gonon G, Pandey BN, Azzam EI. The intercellular communications mediating radiation-induced bystander effects and their relevance to environmental, occupational, and therapeutic exposures. Int J Radiat Biol 2022; 99:964-982. [PMID: 35559659 PMCID: PMC9809126 DOI: 10.1080/09553002.2022.2078006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE The assumption that traversal of the cell nucleus by ionizing radiation is a prerequisite to induce genetic damage, or other important biological responses, has been challenged by studies showing that oxidative alterations extend beyond the irradiated cells and occur also in neighboring bystander cells. Cells and tissues outside the radiation field experience significant biochemical and phenotypic changes that are often similar to those observed in the irradiated cells and tissues. With relevance to the assessment of long-term health risks of occupational, environmental and clinical exposures, measurable genetic, epigenetic, and metabolic changes have been also detected in the progeny of bystander cells. How the oxidative damage spreads from the irradiated cells to their neighboring bystander cells has been under intense investigation. Following a brief summary of the trends in radiobiology leading to this paradigm shift in the field, we review key findings of bystander effects induced by low and high doses of various types of radiation that differ in their biophysical characteristics. While notable mechanistic insights continue to emerge, here the focus is on the many means of intercellular communication that mediate these effects, namely junctional channels, secreted molecules and extracellular vesicles, and immune pathways. CONCLUSIONS The insights gained by studying radiation bystander effects are leading to a basic understanding of the intercellular communications that occur under mild and severe oxidative stress in both normal and cancerous tissues. Understanding the mechanisms underlying these communications will likely contribute to reducing the uncertainty of predicting adverse health effects following exposure to low dose/low fluence ionizing radiation, guide novel interventions that mitigate adverse out-of-field effects, and contribute to better outcomes of radiotherapeutic treatments of cancer. In this review, we highlight novel routes of intercellular communication for investigation, and raise the rationale for reconsidering classification of bystander responses, abscopal effects, and expression of genomic instability as non-targeted effects of radiation.
Collapse
Affiliation(s)
- Manuela Buonanno
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, 10032, USA
| | - Géraldine Gonon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSESANTE/SERAMED/LRAcc, 92262, Fontenay-aux-Roses, France
| | - Badri N. Pandey
- Bhabha Atomic Research Centre, Radiation Biology and Health Sciences Division, Trombay, Mumbai 400 085, India
| | - Edouard I. Azzam
- Radiobiology and Health Branch, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
- Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
19
|
Xu F, Liang Y, Mo WB, Yan XJ, Zhang R. Concurrent lung adenocarcinoma and bladder diffuse large B-cell lymphoma: a case report and literature review. J Int Med Res 2022; 50:3000605221081672. [PMID: 35226514 PMCID: PMC8894961 DOI: 10.1177/03000605221081672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lung adenocarcinoma is one of the most common solid tumors, and diffuse large B-cell lymphoma (DLBCL) is the most common histological subtype of adult non-Hodgkin’s lymphoma. Although extra-nodular lesions are frequently observed in patients with DLBCL, urinary bladder involvement is rare. We report the case of a 77-year-old woman with lung adenocarcinoma who was diagnosed with a second primary bladder DLBCL, 9 months after treatment with molecular targeted drugs. Simultaneous therapies for her lymphoma with lenalidomide and rituximab and a tyrosine kinase inhibitor therapy for her lung cancer were both effective. This result was consistent with previous reports suggesting that patients unable to tolerate intensive chemotherapy could benefit from targeted therapies. Current research into the use of lenalidomide for the treatment of lymphomas and solid tumors is promising in terms of exploring immunotherapy as an alternative option for patients with concurrent solid tumors and lymphomas who have poor tolerance to radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Feng Xu
- The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Ying Liang
- The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Wen-Bin Mo
- The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Xiao-Jing Yan
- The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Rui Zhang
- The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
20
|
Li Y, Huang L, Chen Y, Shi Y, Ze Y, Yao Y. Irradiated cell-derived exosomes transmit essential molecules inducing radiotherapy resistance. Int J Radiat Oncol Biol Phys 2022; 113:192-202. [PMID: 35217095 DOI: 10.1016/j.ijrobp.2022.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/11/2021] [Accepted: 01/23/2022] [Indexed: 02/05/2023]
Abstract
Radio-resistance has always been a major obstacle in radiation therapy (RT) progress. Radiotherapy (RT) leads to changes in the contents of released exosomes. The researches have shown that irradiated cell-derived exosomes influence recipient cell proliferation, migration, cell cycle arrest and apoptosis. All evidence indicates that exosomes play a significant role in radio-resistance. In this review, we describe the potential role of exosomes in cancer. We summarize that the irradiated cell-derived exosomes influence radio-resistance in recipient cells by three main mechanisms: 1) enhancing DNA repair, 2) regulating cell death signalling pathways, 3) inducing cancer cells to exhibit stem cell properties. We also discuss that the origin of the phenomenon might be the changes of molecular mechanisms of irradiated cell-derived exosomes formation affected by RT. Further, targeting exosomes as an adjuvant therapy might be a promising way for cancer treatments.
Collapse
Affiliation(s)
- Yiling Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Linyang Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yanchi Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yixin Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yiting Ze
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
21
|
Zhang W, Liu J, Li X, Zheng Y, Chen L, Wang D, Foda MF, Ma Z, Zhao Y, Han H. Precise Chemodynamic Therapy of Cancer by Trifunctional Bacterium-Based Nanozymes. ACS NANO 2021; 15:19321-19333. [PMID: 34851608 DOI: 10.1021/acsnano.1c05605] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chemodynamic therapy (CDT) destroys cancer cells by converting H2O2 or O2 into reactive oxygen species (ROS), but its therapeutic efficacy is restricted by the antioxidant capacity of tumor. Previous solutions focused on strengthening the nanodrugs with the ability to increase ROS production or weaken the antioxidant capacity of cancer cells. Conversely, we here develop a mild nanodrug with negligible side effects. Specifically, the Au@Pt nanozyme decorated on a bacterial surface (Bac-Au@Pt) is reported to achieve precise CDT. Due to the tumor targeting ability of bacteria and catalytic property of Au@Pt nanozyme under acidic conditions, this nanosystem can release ROS to tumor cells effectively. In addition, the interferon gamma released by T cells specifically decreases the intracellular reductants in tumor cells, while having no obvious effect on normal cells. Therefore, a low dose of Bac-Au@Pt achieves a satisfactory therapeutic efficacy to tumor cells and is nontoxic to normal cells even at their acidic components. This nanosystem enables CDT and immunotherapy to mutually benefit and improve by each other, providing a promising strategy to achieve high anticancer efficacy even with a low dose usage.
Collapse
Affiliation(s)
- Weiyun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiawei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Xuyu Li
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yue Zheng
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Lianfu Chen
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, PR China
| | - Dongdong Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Mohamed Frahat Foda
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
22
|
Lin W, Cai XD. Current Strategies for Cancer Cell-Derived Extracellular Vesicles for Cancer Therapy. Front Oncol 2021; 11:758884. [PMID: 34804956 PMCID: PMC8602829 DOI: 10.3389/fonc.2021.758884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer cell-derived extracellular vesicles (CEVs), a novel type of therapeutic agent in cancer treatment, can be prepared from the autocrine secretion of various cancer cells, the direct extraction of cancer cells and the combination of cancer cell-derived membranes with advanced materials. With various bioactive molecules, exosomes are produced by cells for intercellular communication. Although cancer cell-derived exosomes are known to inhibit tumor apoptosis and promote the progression of cancer, researchers have developed various innovative strategies to prepare anti-tumor vesicles from cancer cells. With current strategies for anti-tumor vesicles, four different kinds of CEVs are classified including irradiated CEVs, advanced materials combined CEVs, chemotherapeutic drugs loaded CEVs and genetically engineered CEVs. In this way, CEVs can not only be the carriers for anti-tumor drugs to the target tumor area but also act as immune-active agents. Problems raised in the strategies mainly concerned with the preparation, efficacy and application. In this review, we classified and summarized the current strategies for utilizing the anti-tumor potential of CEVs. Additionally, the challenges and the prospects of this novel agent have been discussed.
Collapse
Affiliation(s)
- Weijian Lin
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xing-Dong Cai
- Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
23
|
|
24
|
Manoukian P, Bijlsma M, van Laarhoven H. The Cellular Origins of Cancer-Associated Fibroblasts and Their Opposing Contributions to Pancreatic Cancer Growth. Front Cell Dev Biol 2021; 9:743907. [PMID: 34646829 PMCID: PMC8502878 DOI: 10.3389/fcell.2021.743907] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic tumors are known to harbor an abundant and highly desmoplastic stroma. Among the various cell types that reside within tumor stroma, cancer-associated fibroblasts (CAFs) have gained a lot of attention in the cancer field due to their contributions to carcinogenesis and tumor architecture. These cells are not a homogeneous population, but have been shown to have different origins, phenotypes, and contributions. In pancreatic tumors, CAFs generally emerge through the activation and/or recruitment of various cell types, most notably resident fibroblasts, pancreatic stellate cells (PSCs), and tumor-infiltrating mesenchymal stem cells (MSCs). In recent years, single cell transcriptomic studies allowed the identification of distinct CAF populations in pancreatic tumors. Nonetheless, the exact sources and functions of those different CAF phenotypes remain to be fully understood. Considering the importance of stromal cells in pancreatic cancer, many novel approaches have aimed at targeting the stroma but current stroma-targeting therapies have yielded subpar results, which may be attributed to heterogeneity in the fibroblast population. Thus, fully understanding the roles of different subsets of CAFs within the stroma, and the cellular dynamics at play that contribute to heterogeneity in CAF subsets may be essential for the design of novel therapies and improving clinical outcomes. Fortunately, recent advances in technologies such as microfluidics and bio-printing have made it possible to establish more advanced ex vivo models that will likely prove useful. In this review, we will present the different roles of stromal cells in pancreatic cancer, focusing on CAF origin as a source of heterogeneity, and the role this may play in therapy failure. We will discuss preclinical models that could be of benefit to the field and that may contribute to further clinical development.
Collapse
Affiliation(s)
- Paul Manoukian
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maarten Bijlsma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hanneke van Laarhoven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
25
|
Shaw A, Gullerova M. Home and Away: The Role of Non-Coding RNA in Intracellular and Intercellular DNA Damage Response. Genes (Basel) 2021; 12:1475. [PMID: 34680868 PMCID: PMC8535248 DOI: 10.3390/genes12101475] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
Non-coding RNA (ncRNA) has recently emerged as a vital component of the DNA damage response (DDR), which was previously believed to be solely regulated by proteins. Many species of ncRNA can directly or indirectly influence DDR and enhance DNA repair, particularly in response to double-strand DNA breaks, which may hold therapeutic potential in the context of cancer. These include long non-coding RNA (lncRNA), microRNA, damage-induced lncRNA, DNA damage response small RNA, and DNA:RNA hybrid structures, which can be categorised as cis or trans based on the location of their synthesis relative to DNA damage sites. Mechanisms of RNA-dependent DDR include the recruitment or scaffolding of repair factors at DNA break sites, the regulation of repair factor expression, and the stabilisation of repair intermediates. DDR can also be communicated intercellularly via exosomes, leading to bystander responses in healthy neighbour cells to generate a population-wide response to damage. Many microRNA species have been directly implicated in the propagation of bystander DNA damage, autophagy, and radioresistance, which may prove significant for enhancing cancer treatment via radiotherapy. Here, we review recent developments centred around ncRNA and their contributions to intracellular and intercellular DDR mechanisms.
Collapse
Affiliation(s)
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK;
| |
Collapse
|
26
|
Reese M, Dhayat SA. Small extracellular vesicle non-coding RNAs in pancreatic cancer: molecular mechanisms and clinical implications. J Hematol Oncol 2021; 14:141. [PMID: 34496946 PMCID: PMC8424929 DOI: 10.1186/s13045-021-01149-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/25/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic cancer has the worst prognosis among common tumors which is attributed to its aggressive phenotype, diagnosis at advanced, inoperable stages, and resistance to systemic therapy. Non-coding RNAs (ncRNAs) such as microRNAs, long non-coding RNAs, and circular RNAs have been established as important regulators of gene expression and their deregulation has been implicated in multiple diseases and foremost cancer. In the tumor microenvironment, non-coding RNAs can be distributed among cancer cells, stromal cells, and immune cells via small extracellular vesicles (sEVs), thereby facilitating intercellular communication and influencing major cancer hallmarks such as angiogenesis, evasion of the immune system, and metastatic dissemination. Furthermore, sEV-ncRNAs have shown promising potential as liquid biopsies with diagnostic and prognostic significance. In this review, we summarize the role of sEVs as carriers of ncRNAs and underlying molecular mechanisms in pancreatic cancer. Moreover, we review the potential of sEV-ncRNAs as biomarkers and highlight the suitability of sEVs as delivery vehicles for ncRNA-based cancer therapy.
Collapse
Affiliation(s)
- Moritz Reese
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149, Muenster, Germany
| | - Sameer A Dhayat
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149, Muenster, Germany.
| |
Collapse
|
27
|
Hussain Z, Nigri J, Tomasini R. The Cellular and Biological Impact of Extracellular Vesicles in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13123040. [PMID: 34207163 PMCID: PMC8235245 DOI: 10.3390/cancers13123040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The increased incidence and global failure of ongoing therapies project pancreatic cancer as the second deadliest cancer worldwide. While our knowledge of pancreatic cancer cells’ abilities and specificities has drastically improved based on multi-scaled omics, one must consider that much more remains to be uncovered on the role and impact of stromal cells and the established network of communication with tumor cells. This review article discusses how tumor cells communicate with the various cells composing the stroma and its implication in tumor cells’ abilities, PDA (pancreatic ductal adenocarcinoma) carcinogenesis and therapeutic response. We will focus on extracellular vesicles-mediated crosstalk and how this multifaceted dialogue impacts both cellular compartments and its subsequent impact on PDA biology. Abstract Deciphering the interactions between tumor and stromal cells is a growing field of research to improve pancreatic cancer-associated therapies and patients’ care. Indeed, while accounting for 50 to 90% of the tumor mass, many pieces of evidence reported that beyond their structural role, the non-tumoral cells composing the intra-tumoral microenvironment influence tumor cells’ proliferation, metabolism, cell death and resistance to therapies, among others. Simultaneously, tumor cells can influence non-tumoral neighboring or distant cells in order to shape a tumor-supportive and immunosuppressive environment as well as influencing the formation of metastatic niches. Among intercellular modes of communication, extracellular vesicles can simultaneously transfer the largest variety of signals and were recently reported as key effectors of cell–cell communication in pancreatic cancer, from its development to its evolution as well as its ability to resist available treatments. This review focuses on extracellular vesicles-mediated communication between different cellular components of pancreatic tumors, from the modulation of cellular activities and abilities to their biological and physiological relevance. Taking into consideration the intra-tumoral microenvironment and its extracellular-mediated crosstalk as main drivers of pancreatic cancer development should open up new therapeutic windows.
Collapse
|