1
|
Fuloria S, Yadav G, Menon SV, Ali H, Pant K, Kaur M, Deorari M, Sekar M, Narain K, Kumar S, Fuloria NK. Targeting the Wnt/β-catenin cascade in osteosarcoma: The potential of ncRNAs as biomarkers and therapeutics. Pathol Res Pract 2024; 259:155346. [PMID: 38781762 DOI: 10.1016/j.prp.2024.155346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Osteosarcoma (OS) is a bone cancer which stems from several sources and presents with diverse clinical features, making evaluation and treatment difficult. Chemotherapy tolerance and restricted treatment regimens hinder progress in survival rates, requiring new and creative therapeutic strategies. The Wnt/β-catenin system has been recognised as an essential driver of OS development, providing potential avenues for therapy. Non-coding RNAs (ncRNAs), such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs), are essential in modulating the Wnt/β-catenin cascade in OS. MiRNAs control the system by targeting vital elements, while lncRNAs and circRNAs interact with system genes, impacting OS growth and advancement. This paper thoroughly analyses the intricate interplay between ncRNAs and the Wnt/β-catenin cascade in OS. We examine how uncontrolled levels of miRNAs, lncRNAs, and circRNAs lead to an abnormal Wnt/β-catenin network, which elevates the development, spread, and susceptibility to the treatment of OS. We emphasise the potential of ncRNAs as diagnostic indicators and avenues for treatment in OS care. The review offers valuable insights for academics and clinicians studying OS aetiology and creating new treatment techniques for the ncRNA-Wnt/β-catenin cascade. Utilising the oversight roles of ncRNAs in the Wnt/β-catenin system shows potential for enhancing the outcomes of patients and progressing precision medicine in OS therapy.
Collapse
Affiliation(s)
| | - Geeta Yadav
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab 140307, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Kamal Narain
- Faculty of Medicine, AIMST University, Kedah 08100, Malaysia
| | - Sokindra Kumar
- Faculty of Pharmacy, Swami Vivekanand Subharti University, Subhartipuram, Meerut-25005, U.P. India
| | | |
Collapse
|
2
|
Mai Y, Liao C, Wang S, Zhou X, Meng L, Chen C, Qin Y, Deng G. High glucose-induced NCAPD2 upregulation promotes malignant phenotypes and regulates EMT via the Wnt/β-catenin signaling pathway in HCC. Am J Cancer Res 2024; 14:1685-1711. [PMID: 38726276 PMCID: PMC11076239 DOI: 10.62347/hynz9211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Diabetes mellitus (DM) is recognized as a risk factor for hepatocellular carcinoma (HCC). High glucose levels have been implicated in inducing epithelial-mesenchymal transition (EMT), contributing to the progression of various cancers. However, the molecular crosstalk remains unclear. This study aimed to elucidate the molecular mechanisms linking DM to HCC. Initially, the expression of NCAPD2 in HCC cells and patients was measured. A series of functional in vitro assays to examine the effects of NCAPD2 on the malignant behaviors and EMT of HCC under high glucose conditions were then conducted. Furthermore, the impacts of NCAPD2 knockdown on HCC proliferation and the β-catenin pathway were investigated in vivo. In addition, bioinformatics methods were performed to analyze the mechanisms and pathways involving NCAPD2, as well as its association with immune infiltration and drug sensitivity. The findings indicated that NCAPD2 was overexpressed in HCC, particularly in patients with DM, and its aberrant upregulation was linked to poor prognosis. In vitro experiments demonstrated that high glucose upregulated NCAPD2 expression, enhancing proliferation, invasion, and EMT, while knockdown of NCAPD2 reversed these effects. In vivo studies suggested that NCAPD2 knockdown might suppress HCC growth via the β-catenin pathway. Functional enrichment analysis revealed that NCAPD2 was involved in cell cycle regulation and primarily interacted with NCAPG, SMC4, and NCAPH. Additionally, NCAPD2 was positively correlated with EMT and the Wnt/β-catenin pathway, whereas knockdown of NCAPD2 inhibited the Wnt/β-catenin pathway. Moreover, NCAPD2 expression was significantly associated with immune cell infiltration, immune checkpoints, and drugs sensitivity. In conclusion, our study identified NCAPD2 as a novel oncogene in HCC and as a potential therapeutic target for HCC patients with DM.
Collapse
Affiliation(s)
- Yuhua Mai
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Chuanjie Liao
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of EducationNanning 530021, Guangxi, China
| | - Shengyu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Liheng Meng
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Cuihong Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Yingfen Qin
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Ganlu Deng
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of EducationNanning 530021, Guangxi, China
| |
Collapse
|
3
|
Cai X, Lv Y, Pan J, Cao Z, Zhang J, Li Y, Zheng H. CBX8 Promotes Epithelial-mesenchymal Transition, Migration, and Invasion of Lung Cancer through Wnt/β-catenin Signaling Pathway. Curr Protein Pept Sci 2024; 25:386-393. [PMID: 38265409 DOI: 10.2174/0113892037273375231204080906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Lung cancer (LC) is primarily responsible for cancer-related deaths worldwide. Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells acquire mesenchymal features and is associated with the development of tumors. CBX8, a member of the PcG protein family, plays a critical role in various cancers, containing LC. However, specific regulatory mechanisms of CBX8 in LC progression are not fully understood. This study aimed to investigate the regulatory role of CBX8 in LC progression. METHODS Bioinformatics was used to analyze the relationship between CBX8 level and tumor and the enrichment pathway of CBX8 enrichment. qRT-PCR was used to detect the differential expression of CBX8 in LC cells and normal lung epithelial cells. The effects of knockdown or overexpression of CBX8 on the proliferation, migration and invasion of LC cells were evaluated by CCK- -8 assay and Transwell assay, and the levels of proteins associated with the EMT pathway and Wnt/ β-catenin signaling pathway were detected by western blot. RESULTS Bioinformatics analysis revealed that CBX8 was highly expressed in LC and enriched on the Wnt/β-catenin signaling pathway. The expression level of CBX8 was significantly elevated in LC cells. Knockdown of CBX8 significantly inhibited cell proliferation, migration and invasion, and decreased the expression levels of EMT-related proteins and Wnt/β-catenin pathway-related proteins. Conversely, overexpression of CBX8 promoted cell proliferation, migration and invasion, and increased the expression levels of EMT-related proteins and Wnt/β-catenin pathway-related proteins. The Wnt inhibitor IWP-4 alleviated the effects produced by overexpression of CBX8. CONCLUSION Collectively, these data demonstrated that CBX8 induced EMT through Wnt/β-- catenin signaling, driving migration and invasion of LC cells.
Collapse
Affiliation(s)
- Xiaoping Cai
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Yuankai Lv
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Jiongwei Pan
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Zhuo Cao
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Junzhi Zhang
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Yuling Li
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Hao Zheng
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| |
Collapse
|
4
|
Regulation of the Epithelial to Mesenchymal Transition in Osteosarcoma. Biomolecules 2023; 13:biom13020398. [PMID: 36830767 PMCID: PMC9953423 DOI: 10.3390/biom13020398] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a cellular process that has been linked to the promotion of aggressive cellular features in many cancer types. It is characterized by the loss of the epithelial cell phenotype and a shift to a more mesenchymal phenotype and is accompanied by an associated change in cell markers. EMT is highly complex and regulated via multiple signaling pathways. While the importance of EMT is classically described for carcinomas-cancers of epithelial origin-it has also been clearly demonstrated in non-epithelial cancers, including osteosarcoma (OS), a primary bone cancer predominantly affecting children and young adults. Recent studies examining EMT in OS have highlighted regulatory roles for multiple proteins, non-coding nucleic acids, and components of the tumor micro-environment. This review serves to summarize these experimental findings, identify key families of regulatory molecules, and identify potential therapeutic targets specific to the EMT process in OS.
Collapse
|
5
|
Xiaotong S, Xiao L, Shiyu L, Zhiguo B, Chunyang F, Jianguo L. LncRNAs could play a vital role in osteosarcoma treatment: Inhibiting osteosarcoma progression and improving chemotherapy resistance. Front Genet 2023; 13:1022155. [PMID: 36726721 PMCID: PMC9885180 DOI: 10.3389/fgene.2022.1022155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Osteosarcoma (OS) is one of the most common primary solid malignant tumors in orthopedics, and its main clinical treatments are surgery and chemotherapy. However, a wide surgical resection range, functional reconstruction of postoperative limbs, and chemotherapy resistance remain as challenges for patients and orthopedists. To address these problems, the discovery of new effective conservative treatments is important. Long non-coding RNAs (lncRNAs) are RNAs longer than 200 nucleotides in length that do not encode proteins. Researchers have recently found that long non-coding RNAs are closely associated with the development of OS, indicating their potentially vital role in new treatment methods for OS. This review presents new findings regarding the association of lncRNAs with OS and summarizes potential clinical applications of OS with lncRNAs, including the downregulation of oncogenic lncRNAs, upregulation of tumor suppressive lncRNAs, and lncRNAs-based treatment to improve chemotherapy resistance. We hope these potential methods will be translated into clinical applications and greatly reduce patient suffering.
Collapse
Affiliation(s)
- Shi Xiaotong
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Li Xiao
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Liao Shiyu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Bi Zhiguo
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Feng Chunyang
- Department of Obstetrics and Gynecology, Renji Hospital of Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Feng Chunyang, ; Liu Jianguo,
| | - Liu Jianguo
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China,*Correspondence: Feng Chunyang, ; Liu Jianguo,
| |
Collapse
|
6
|
Xia W, Zeng C, Zheng Z, Huang C, Zhou Y, Bai L. Development and Validation of a Novel Mitochondrion and Ferroptosis-Related Long Non-Coding RNA Prognostic Signature in Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:844759. [PMID: 36036006 PMCID: PMC9413087 DOI: 10.3389/fcell.2022.844759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Mitochondrion and ferroptosis are related to tumorigenesis and tumor progression of hepatocellular carcinoma (HCC). Therefore, this study focused on exploring the participation of lncRNAs in mitochondrial dysfunction and ferroptosis using public datasets from The Cancer Genome Atlas (TCGA) database. We identified the mitochondrion- and ferroptosis-related lncRNAs by Pearson's analysis and lasso-Cox regression. Moreover, real-time quantitative reverse transcription PCR (RT-qPCR) was utilized to further confirm the abnormal expression of these lncRNAs. Based on eight lncRNAs, the MF-related lncRNA prognostic signature (LPS) with outstanding stratification ability and prognostic prediction capability was constructed. In addition, functional enrichment analysis and immune cell infiltration analysis were performed to explore the possible functions of lncRNAs and their impact on the tumor microenvironment. The pathways related to G2M checkpoint and MYC were activated, and the infiltration ratio of regulatory T cells and M0 and M2 macrophages was higher in the high-risk group. In conclusion, these lncRNAs may affect mitochondria functions, ferroptosis, and immune cell infiltration in HCC through specific pathways, which may provide valuable insight into the progression and therapies of HCC.
Collapse
Affiliation(s)
- Wuzheng Xia
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital/The First School of Clinical Medicine, Southem Medical University, Guangzhou, China
- Department of Organ Transplant, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Cong Zeng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital/The First School of Clinical Medicine, Southem Medical University, Guangzhou, China
- Department of General Practice, Hospital of South China Normal University, Guangzhou, China
| | - Zehao Zheng
- Department of Organ Transplant, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of General Surger, Shantou University of Medical College, Shantou, China
| | - Chunwang Huang
- Department of Ultrasound, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu Zhou
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lan Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital/The First School of Clinical Medicine, Southem Medical University, Guangzhou, China
| |
Collapse
|
7
|
Non-coding RNAs in EMT regulation: Association with tumor progression and therapy response. Eur J Pharmacol 2022; 932:175212. [DOI: 10.1016/j.ejphar.2022.175212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/12/2022]
|
8
|
Odri GA, Tchicaya-Bouanga J, Yoon DJY, Modrowski D. Metastatic Progression of Osteosarcomas: A Review of Current Knowledge of Environmental versus Oncogenic Drivers. Cancers (Basel) 2022; 14:cancers14020360. [PMID: 35053522 PMCID: PMC8774233 DOI: 10.3390/cancers14020360] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Osteosarcomas are heterogeneous bone tumors with complex genetic and chromosomic alterations. The numerous patients with metastatic osteosarcoma have a very poor prognosis, and only those who can have full surgical resection of the primary tumor and of all the macro metastasis can survive. Despite the recent improvements in prediction and early detection of metastasis, big efforts are still required to understand the specific mechanisms of osteosarcoma metastatic progression, in order to reveal novel therapeutic targets. Abstract Metastases of osteosarcomas are heterogeneous. They may grow simultaneously with the primary tumor, during treatment or shortly after, or a long time after the end of the treatment. They occur mainly in lungs but also in bone and various soft tissues. They can have the same histology as the primary tumor or show a shift towards a different differentiation path. However, the metastatic capacities of osteosarcoma cells can be predicted by gene and microRNA signatures. Despite the identification of numerous metastasis-promoting/predicting factors, there is no efficient therapeutic strategy to reduce the number of patients developing a metastatic disease or to cure these metastatic patients, except surgery. Indeed, these patients are generally resistant to the classical chemo- and to immuno-therapy. Hence, the knowledge of specific mechanisms should be extended to reveal novel therapeutic approaches. Recent studies that used DNA and RNA sequencing technologies highlighted complex relations between primary and secondary tumors. The reported results also supported a hierarchical organization of the tumor cell clones, suggesting that cancer stem cells are involved. Because of their chemoresistance, their plasticity, and their ability to modulate the immune environment, the osteosarcoma stem cells could be important players in the metastatic process.
Collapse
Affiliation(s)
- Guillaume Anthony Odri
- INSERM UMR 1132, Biologie de l’os et du Cartilage (BIOSCAR), Lariboisière Hospital, UFR de Médecine, Faculté de Santé, University of Paris, 75010 Paris, France; (J.T.-B.); (D.J.Y.Y.); (D.M.)
- Service de Chirurgie Orthopédique et Traumatologique, DMU Locomotion, Lariboisière Hospital, 75010 Paris, France
- Correspondence:
| | - Joëlle Tchicaya-Bouanga
- INSERM UMR 1132, Biologie de l’os et du Cartilage (BIOSCAR), Lariboisière Hospital, UFR de Médecine, Faculté de Santé, University of Paris, 75010 Paris, France; (J.T.-B.); (D.J.Y.Y.); (D.M.)
| | - Diane Ji Yun Yoon
- INSERM UMR 1132, Biologie de l’os et du Cartilage (BIOSCAR), Lariboisière Hospital, UFR de Médecine, Faculté de Santé, University of Paris, 75010 Paris, France; (J.T.-B.); (D.J.Y.Y.); (D.M.)
- Service de Chirurgie Orthopédique et Traumatologique, DMU Locomotion, Lariboisière Hospital, 75010 Paris, France
| | - Dominique Modrowski
- INSERM UMR 1132, Biologie de l’os et du Cartilage (BIOSCAR), Lariboisière Hospital, UFR de Médecine, Faculté de Santé, University of Paris, 75010 Paris, France; (J.T.-B.); (D.J.Y.Y.); (D.M.)
| |
Collapse
|
9
|
Chen L, Lin Y, Liu G, Xu R, Hu Y, Xie J, Yu H. Clinical Value for Diagnosis and Prognosis of Signal Sequence Receptor 1 (SSR1) and Its Potential Mechanism in Hepatocellular Carcinoma: A Comprehensive Study Based on High-Throughput Data Analysis. Int J Gen Med 2021; 14:7435-7451. [PMID: 34744454 PMCID: PMC8566009 DOI: 10.2147/ijgm.s336725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Objective Hepatocellular Carcinoma (HCC) has the characteristics of high incidence and poor prognosis. However, the underlying mechanism of HCC has not yet been fully elucidated. This study aims to investigate the potential mechanism and clinical significance of signal sequence receptor (SSR1) in HCC through bioinformatics methods. Methods Four online (GEPIA, TIMER, TCGA, and GEO) databases were used to explore the expression level of SSR1 in HCC. The summary receiver operating characteristic (SROC) analysis and standardized mean difference (SMD) calculation were performed further to detect its diagnostic ability and expression level. The Human Protein Atlas (HPA) database was applied to verify the level of SSR1 protein expression. Chi-square test and Fisher’s exact test were carried out to determine the clinical relevance of SSR1 expression. KM survival analysis, univariate and multivariate COX regression analyses were employed to explore the prognostic impact of SSR1. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene set enrichment analysis (GSEA) were implemented to reveal the underlying mechanism of SSR1. Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR) was used to verify the expression of SSR1 in HCC. Results SSR1 was significantly overexpressed in HCC (SMD=1.25, P=0.03) and had the moderate diagnostic ability (AUC=0.84). SSR1 expression was significantly correlated with T stage, Gender, Pathologic stage (All P<0.05). Patients with high SSR1 expression had shorter overall survival (OS). Univariate and multivariate Cox regression analyses showed that high SSR1 expression was an independent risk factor for poor prognosis. KEGG analysis showed that SSR1-related genes were enriched in the cell cycle, DNA replication, and TGF-beta signaling pathway. GSEA analysis also shows that the high expression of SSR1 is related to the activation of the above three signal pathways. qRT-PCR showed that the SSR1 expression in HCC was significantly higher than the Peri-carcinoma tissue (PHCC) and the corresponding normal liver tissue. Conclusion SSR1 expression was significantly up-regulated, and it had the potential as a biomarker for the diagnosis and prognosis of HCC. It was very likely to participate in the occurrence and development of HCC by regulating the cell cycle. In summary, our study comprehensively analyzed the clinical value of SSR1 and also conducted a preliminary study on its potential mechanism, which will provide inspiration for the in-depth study of SSR1 in HCC.
Collapse
Affiliation(s)
- Liang Chen
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui, People's Republic of China
| | - Yunhua Lin
- The First Clinical Medical College, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Guoqing Liu
- The First Clinical Medical College, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Rubin Xu
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui, People's Republic of China
| | - Yiming Hu
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, People's Republic of China
| | - Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hongzhu Yu
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui, People's Republic of China
| |
Collapse
|
10
|
Ma W, Gao Y, Zhang J, Yao X, Jia L, Xu Q. Long noncoding RNA LINC01410 promotes tumorigenesis of osteosarcoma cells via miR-497-5p/HMGA2 axis. J Biochem Mol Toxicol 2021; 35:e22921. [PMID: 34605103 DOI: 10.1002/jbt.22921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/14/2021] [Accepted: 09/20/2021] [Indexed: 11/08/2022]
Abstract
LINC01410 is a tumor promoter that is upregulated in some cancer types, such as osteosarcoma (OS). Nonetheless, its role in OS and the underlying molecular mechanism have not been fully understood. Hence, we sought to elucidate it. We performed reverse-transcription quantitative polymerase chain reaction for examining LINC01410, miR-497-5p and HMGA2 levels. Additionally, we carried out the cell counting kit-8 and Transwell assays for detecting cell proliferation and invasion/migration. Bioinformatics predicted that there was a miR-497-5p binding site in LINC01410 or HMGA2; meanwhile, miR-497-5p was found to interact with HMGA2 and LINC01410 through dual-luciferase reporter assay. LINC01410 and HMGA2 were high, and miR-497-5p showed low expression in OS tissues and cells. Cell function assay demonstrated that LINC01410 or HMGA2 knockdown or miR-497-5p overexpression obviously restrained OS proliferation, invasion, and migration. Oppositely, inhibiting miR-497-5p had the opposite effects. Functionally, miR-497-5p bound with LINC01410 3'-untranslated region and HMGA2 was found to be the miR-497-5p target gene. Lastly, LINC01410 enhanced OS cell growth, invasion, and migration via decreasing miR-497-5p expression, whereas increasing that of HMGA2. We have demonstrated that LINC01410 promoted OS development partly by miR-497-5p/HMGA2 signal transduction pathway and this provides a reference for studying the mechanism of LINC01410 in OS.
Collapse
Affiliation(s)
- Weiguo Ma
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Yun Gao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Junhua Zhang
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Xiaobin Yao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Lina Jia
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Qingxia Xu
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| |
Collapse
|
11
|
LncRNA CASC15 promotes the proliferation of papillary thyroid carcinoma cells by regulating the miR-7151-5p/WNT7A axis. Pathol Res Pract 2021; 225:153561. [PMID: 34325316 DOI: 10.1016/j.prp.2021.153561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/08/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in the regulation of human thyroid cancer (TC), including papillary thyroid carcinoma (PTC); PTC is the most common pathological subtype of TC. To date, the expression, function, and mechanism of the lncRNA CASC15 in PTC remain unclear. The present study results showed that CASC15 was overexpressed in PTC tissues compared with normal tissues and acted as a potent oncogene to promote the proliferation and tumorigenesis of PTC cells both in vitro and in vivo. Mechanistic studies demonstrated that CASC15 could serve as an endogenous miRNA sponge to absorb and downregulate miR-7151-5p, thereby preventing the inhibition of WNT7A during PTC progression. Furthermore, the study demonstrated that CASC15 activated the WNT/β‑catenin signaling pathway by upregulating WNT7A in PTC. Taken together, our findings identified CASC15 as a potential diagnostic marker or therapeutic target for PTC progression. DATA AVAILABILITY: Please contact the corresponding author for a data request.
Collapse
|