1
|
Gupta N, Abd El-Gawaad NS, Mallasiy LO, Alghamdi S, Yadav VK. Hydrogen: an advanced and safest gas option for cancer treatment. Med Gas Res 2025; 15:191-192. [PMID: 40070185 PMCID: PMC11918483 DOI: 10.4103/mgr.medgasres-d-24-00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/31/2024] [Indexed: 03/20/2025] Open
Affiliation(s)
- Nishant Gupta
- Medical Division, River Engineering Private Limited, Greater Noida, India (Gupta N)
| | - N S Abd El-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia (Abd EL-Gawaad NS)
| | - L O Mallasiy
- Department of home economics, Faculty of Art and Tihama, King Khalid University, Muhayil Asir, Saudi Arabia (Mallasiy LO)
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia (Alghamdi S)
| | - Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot 360003, Gujarat, India (Yadav VK)
| |
Collapse
|
2
|
Jin J, Yue L, Du M, Geng F, Gao X, Zhou Y, Lu Q, Pan X. Molecular Hydrogen Therapy: Mechanisms, Delivery Methods, Preventive, and Therapeutic Application. MedComm (Beijing) 2025; 6:e70194. [PMID: 40297245 PMCID: PMC12035766 DOI: 10.1002/mco2.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Molecular hydrogen (H2), recognized as the smallest gas molecule, is capable of permeating cellular membranes and diffusing throughout the body. Due to its high bioavailability, H2 is considered a therapeutic gas for the treatment of various diseases. The therapeutic efficacy of hydrogen is contingent upon factors such as the administration method, duration of contact with diseased tissue, and concentration at targeted sites. H2 can be administered exogenously and is also produced endogenously within the intestinal tract. A comprehensive understanding of its delivery mechanisms and modes of action is crucial for advancing hydrogen medicine. This review highlights H₂'s mechanisms of action, summarizes its administration methods, and explores advancements in treating intestinal diseases (e.g., inflammatory bowel disease, intestinal ischemia-reperfusion, colorectal cancer). Additionally, its applications in managing other diseases are discussed. Finally, the challenges associated with its clinical application and potential solutions are explored. We propose that current delivery challenges faced by H2 can be effectively addressed through the use of nanoplatforms; furthermore, interactions between hydrogen and gut microbiota may provide insights into its mechanisms for treating intestinal diseases. Future research should explore the synergistic effects of H2 in conjunction with conventional therapies and develop personalized treatment plans to achieve precision medicine.
Collapse
Affiliation(s)
- Jiayi Jin
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Lijun Yue
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Maoru Du
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Feng Geng
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Xue Gao
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Yuming Zhou
- Department of Laboratory MedicineYantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Qianqian Lu
- Department of OncologyYantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Xiaohong Pan
- School of PharmacyBinzhou Medical UniversityYantaiChina
| |
Collapse
|
3
|
Khiji MN, Arghidash F, Tanha GK, Zadeh RH, Ghorbani E, Khazaei M, Hassanian SM, Gataa IS, Lam AKY, Giovannetti E, Ferns GA, Nazari E, Avan A. The Therapeutic Application of Hydrogen in Cancer: The Potential and Challenges. Curr Pharm Des 2024; 30:1295-1306. [PMID: 38638053 DOI: 10.2174/0113816128296710240404040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/20/2024]
Abstract
Hydrogen therapy has emerged as a possible approach for both preventing and treating cancer. Cancers are often associated with oxidative stress and chronic inflammation. Hydrogen, with its unique physiological functions and characteristics, exhibits antioxidant, anti-inflammatory, and anti-apoptotic properties, making it an attractive candidate for cancer treatment. Through its ability to mitigate oxidative damage, modulate inflammatory responses, and sustain cellular viability, hydrogen demonstrates significant potential in preventing cancer recurrence and improving treatment outcomes. Preclinical studies have shown the efficacy of hydrogen therapy in several cancer types, highlighting its ability to enhance the effectiveness of conventional treatments while reducing associated side effects. Furthermore, hydrogen therapy has been found to be safe and well-tolerated in clinical settings. Nonetheless, additional investigations are necessary to improve a comprehensive understanding of the mechanisms underlying hydrogen's therapeutic potential and refine the administration and dosage protocols. However, further clinical trials are still needed to explore its safety profile and capacity. In aggregate, hydrogen therapy represents an innovative and promising treatment for several malignancies.
Collapse
Affiliation(s)
- Morteza Nazari Khiji
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Faezeh Arghidash
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rasoul Hossein Zadeh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Alfred King-Yin Lam
- Department of Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Elisa Giovannetti
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU University Medical Center [VUMC], Amsterdam, The Netherlands
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Elham Nazari
- Department of Health Information, Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|