1
|
Thangavelu L, Imran M, Alsharari SH, Abdulaziz AM, Alawlaqi AM, Kamal M, Rekha MM, Kaur M, Soothwal P, Arora I, Kumar MR, Chauhan AS. Exploring hypoxia-induced ncRNAs as biomarkers and therapeutic targets in lung cancer. Pathol Res Pract 2024; 263:155613. [PMID: 39383737 DOI: 10.1016/j.prp.2024.155613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Abstract
Lung cancer is a deadly disease, causing nearly 20 % of all cancer deaths globally. A key factor in lung cancer's development and resistance to treatment is hypoxia, a condition where tumor cells experience low oxygen levels. In this low-oxygen environment, special molecules called non-coding RNAs (ncRNAs) become critical players. NcRNAs, including lncRNAs, miRNAs, circRNAs, and siRNAs, control how genes function and how cells behave. Some ncRNAs, like HIF1A-AS2 and HOTAIR, are linked to the aggressive spread of lung cancer, making them potential targets for therapy. Others, like certain miRNAs, show promise as early detection tools due to their influence on tumor blood vessel formation and metabolism. This complex interplay between hypoxia and ncRNAs is crucial for understanding lung cancer. For example, circRNAs can control the activity of miRNAs, impacting how tumors respond to low oxygen. Additionally, siRNAs offer a potential strategy to overcome treatment resistance caused by hypoxia. By studying the intricate relationship between hypoxia and ncRNAs, scientists hope to uncover new biomarkers for lung cancer. This knowledge will pave the way for developing more effective and targeted treatments for this devastating disease.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | | | - Akrm M Abdulaziz
- Department of Clinical Pharmacy, King Khalid Hospital, Najran 66262, Saudi Arabia
| | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mandeep Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Pradeep Soothwal
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Isha Arora
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, India.
| |
Collapse
|
2
|
Yan HJ, Lin SC, Xu SH, Gao YB, Zhou BJ, Zhou R, Chen FM, Li FR. Proteomic analysis reveals LRPAP1 as a key player in the micropapillary pattern metastasis of lung adenocarcinoma. Heliyon 2024; 10:e23913. [PMID: 38226250 PMCID: PMC10788494 DOI: 10.1016/j.heliyon.2023.e23913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Objectives Lung adenocarcinomas have different prognoses depending on their histological growth patterns. Micropapillary growth within lung adenocarcinoma, particularly metastasis, is related to dismal prognostic outcome. Metastasis accounts for a major factor leading to mortality among lung cancer patients. Understanding the mechanisms underlying early stage metastasis can help develop novel treatments for improving patient survival. Methods Here, quantitative mass spectrometry was conducted for comparing protein expression profiles among various histological subtypes, including adenocarcinoma in situ, minimally invasive adenocarcinoma, and invasive adenocarcinoma (including acinar and micropapillary [MIP] types). To determine the mechanism of MIP-associated metastasis, we identified a protein that was highly expressed in MIP. The expression of the selected highly expressed MIP protein was verified via immunohistochemical (IHC) analysis and its function was validated by an in vitro migration assay. Results Proteomic data revealed that low-density lipoprotein receptor-related protein-associated protein 1 (LRPAP1) was highly expressed in MIP group, which was confirmed by IHC. The co-expressed proteins in this study, PSMD1 and HSP90AB1, have been reported to be highly expressed in different cancers and play an essential role in metastasis. We observed that LRPAP1 promoted lung cancer progression, including metastasis, invasion and proliferation in vitro and in vivo. Conclusion LRPAP1 is necessary for MIP-associated metastasis and is the candidate novel anti-metastasis therapeutic target.
Collapse
Affiliation(s)
- Hao-jie Yan
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
- Post-doctoral Scientific Research Station of Basic Medicine, Jinan University, 510632, Guangzhou, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, 518020, Shenzhen, China
| | - Sheng-cheng Lin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 518172, Shenzhen, China
| | | | - Yu-biao Gao
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, 518020, Shenzhen, China
| | - Bao-jin Zhou
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ruo Zhou
- Deepxomics Co., Ltd, 518112, Shenzhen, China
| | - Fu-ming Chen
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, 518020, Shenzhen, China
| | - Fu-rong Li
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, 518020, Shenzhen, China
- Institute of Health Medicine, Southern University of Science and Technology, 518055, Shenzhen, China
| |
Collapse
|
3
|
Song Y, Kelava L, Kiss I. MiRNAs in Lung Adenocarcinoma: Role, Diagnosis, Prognosis, and Therapy. Int J Mol Sci 2023; 24:13302. [PMID: 37686110 PMCID: PMC10487838 DOI: 10.3390/ijms241713302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Lung cancer has emerged as a significant public health challenge and remains the leading cause of cancer-related mortality worldwide. Among various types of lung malignancies, lung adenocarcinoma (LUAD) stands as the most prevalent form. MicroRNAs (miRNAs) play a crucial role in gene regulation, and their involvement in cancer has been extensively explored. While several reviews have been published on miRNAs and lung cancer, there remains a gap in the review regarding miRNAs specifically in LUAD. In this review, we not only highlight the potential diagnostic, prognostic, and therapeutic implications of miRNAs in LUAD, but also present an inclusive overview of the extensive research conducted on miRNAs in this particular context.
Collapse
Affiliation(s)
- Yongan Song
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti Str. 12, 7624 Pécs, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Szigeti Str. 12, 7624 Pécs, Hungary
| | - István Kiss
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti Str. 12, 7624 Pécs, Hungary
| |
Collapse
|
4
|
Sun Y, He P, Li L, Ding X. The significance of the crosstalk between ubiquitination or deubiquitination and ncRNAs in non-small cell lung cancer. Front Oncol 2023; 12:969032. [PMID: 36727069 PMCID: PMC9884829 DOI: 10.3389/fonc.2022.969032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Lung cancer (LC) remains the leading cause of cancer-related deaths worldwide, with extremely high morbidity and mortality rates. Non-small cell lung cancer (NSCLC) is the most critical type of LC. It seriously threatens the life and health of patients because of its early metastasis, late clinical symptoms, limited early screening methods, and poor treatment outcomes. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), participate in cell proliferation, metastasis, and chemoresistance. Several previous studies have proven that ncRNAs are vital regulators of tumorigenesis. Ubiquitination plays the most crucial role in protein post-translational modification (PTM). Deubiquitination and ubiquitination form a homeostasis. In summary, ubiquitination and deubiquitination play essential roles in mediating the degradation or overexpression of a range of crucial proteins in various cancers. A growing number of researchers have found that interactions between ncRNAs and ubiquitination (or deubiquitination) play a crucial role in NSCLC. This review presents several typical examples of the important effects of ncRNAs and ubiquitination (or deubiquitination) in NSCLC, aiming to provide more creative ideas for exploring the diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Yiyang Sun
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping He
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Ping He,
| | - Li Li
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Ding
- General Medicine Department, Dalian Friendship Hospital, Dalian, China
| |
Collapse
|
5
|
Vlachová M, Gregorová J, Vychytilová-Faltejsková P, Gabło NA, Radová L, Pospíšilová L, Almáši M, Štork M, Knechtová Z, Minařík J, Popková T, Jelínek T, Hájek R, Pour L, Říhová L, Ševčíková S. Involvement of Small Non-Coding RNA and Cell Antigens in Pathogenesis of Extramedullary Multiple Myeloma. Int J Mol Sci 2022; 23:ijms232314765. [PMID: 36499093 PMCID: PMC9741227 DOI: 10.3390/ijms232314765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Extramedullary multiple myeloma (EMD) is an aggressive disease; malignant plasma cells lose their dependence in the bone marrow microenvironment and migrate into tissues. EMD is a negative prognostic factor of survival. Using flow cytometry and next-generation sequencing, we aimed to identify antigens and microRNAs (miRNAs) involved in EMD pathogenesis. Flow cytometry analysis revealed significant differences in the level of clonal plasma cells between MM and EMD patients, while the expression of CD markers was comparable between these two groups. Further, miR-26a-5p and miR-30e-5p were found to be significantly down-regulated in EMD compared to MM. Based on the expression of miR-26a-5p, we were able to distinguish these two groups of patients with high sensitivity and specificity. In addition, the involvement of deregulated miRNAs in cell cycle regulation, ubiquitin-mediated proteolysis and signaling pathways associated with infections or neurological disorders was observed using GO and KEGG pathways enrichment analysis. Subsequently, a correlation between the expression of analyzed miRNAs and the levels of CD molecules was observed. Finally, clinicopathological characteristics as well as CD antigens associated with the prognosis of MM and EMD patients were identified. Altogether, we identified several molecules possibly involved in the transformation of MM into EMD.
Collapse
Affiliation(s)
- Monika Vlachová
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Jana Gregorová
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Petra Vychytilová-Faltejsková
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Natalia Anna Gabło
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Lenka Radová
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Lenka Pospíšilová
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Martina Almáši
- Department of Clinical Hematology, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Martin Štork
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Zdeňka Knechtová
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Jiří Minařík
- Department of Hemato-Oncology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, 779 00 Olomouc, Czech Republic
| | - Tereza Popková
- Department of Hematooncology, University Hospital Ostrava, Ostrava, and Faculty of Medicine, University Ostrava, 708 00 Ostrava, Czech Republic
| | - Tomáš Jelínek
- Department of Hematooncology, University Hospital Ostrava, Ostrava, and Faculty of Medicine, University Ostrava, 708 00 Ostrava, Czech Republic
| | - Roman Hájek
- Department of Hematooncology, University Hospital Ostrava, Ostrava, and Faculty of Medicine, University Ostrava, 708 00 Ostrava, Czech Republic
| | - Luděk Pour
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Lucie Říhová
- Department of Clinical Hematology, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Sabina Ševčíková
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Correspondence: ; Tel.: +420-549-493-380
| |
Collapse
|
6
|
lncRNA MANCR Inhibits NK Cell Killing Effect on Lung Adenocarcinoma by Targeting miRNA-30d-5p. Cell Microbiol 2022. [DOI: 10.1155/2022/4928635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. NK cells are imperative in spontaneous antitumor response of various cancers. Currently, lncRNAs are considered important modulators of the tumor microenvironment. This study investigated the molecular mechanism by which mitotically associated long noncoding RNA (MANCR) controls killing effect of NK cells on lung adenocarcinoma (LUAD) in the tumor microenvironment. Methods. The interplay between MANCR and miRNA-30d-5p was analyzed by bioinformatics. Expression of MANCR mRNA and miRNA-30d-5p was examined using qRT-PCR. Dual-luciferase reporter and RIP assays were utilized to verify the targeted relationship between MANCR and miRNA-30d-5p. To investigate regulation of MANCR/miRNA-30d-5p axis in NK cell killing effect on LUAD cells, western blot tested the protein level of perforin and granzyme B. ELISA determined the level of IFN-γ. CytoTox 96 Non-Radioactive Cytotoxicity Assay kit was applied for cytotoxicity detection of NK cells. Perforin and granzyme B fluorescence intensity was measured via immunofluorescence, and cell apoptosis levels were also revealed via flow cytometry. Results. MANCR was found to be upregulated, while miRNA-30d-5p expression was downregulated in LUAD tissues. Overexpression of MANCR in LUAD cells significantly reduced NK cell IFN-γ secretion, expression of granzyme B and perforin, and NK cell killing effect. In addition, MANCR could target and downregulate miRNA-30d-5p expression, and miRNA-30d-5p overexpression reversed the inhibition of NK cell killing effect caused by MANCR overexpression. Conclusion. MANCR inhibited the killing effect of NK cells on LUAD via targeting and downregulating miRNA-30d-5p and provided new ideas for antitumor therapy based on tumor microenvironment.
Collapse
|
7
|
van Genugten EAJ, Weijers JAM, Heskamp S, Kneilling M, van den Heuvel MM, Piet B, Bussink J, Hendriks LEL, Aarntzen EHJG. Imaging the Rewired Metabolism in Lung Cancer in Relation to Immune Therapy. Front Oncol 2022; 11:786089. [PMID: 35070990 PMCID: PMC8779734 DOI: 10.3389/fonc.2021.786089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming is recognized as one of the hallmarks of cancer. Alterations in the micro-environmental metabolic characteristics are recognized as important tools for cancer cells to interact with the resident and infiltrating T-cells within this tumor microenvironment. Cancer-induced metabolic changes in the micro-environment also affect treatment outcomes. In particular, immune therapy efficacy might be blunted because of somatic mutation-driven metabolic determinants of lung cancer such as acidity and oxygenation status. Based on these observations, new onco-immunological treatment strategies increasingly include drugs that interfere with metabolic pathways that consequently affect the composition of the lung cancer tumor microenvironment (TME). Positron emission tomography (PET) imaging has developed a wide array of tracers targeting metabolic pathways, originally intended to improve cancer detection and staging. Paralleling the developments in understanding metabolic reprogramming in cancer cells, as well as its effects on stromal, immune, and endothelial cells, a wave of studies with additional imaging tracers has been published. These tracers are yet underexploited in the perspective of immune therapy. In this review, we provide an overview of currently available PET tracers for clinical studies and discuss their potential roles in the development of effective immune therapeutic strategies, with a focus on lung cancer. We report on ongoing efforts that include PET/CT to understand the outcomes of interactions between cancer cells and T-cells in the lung cancer microenvironment, and we identify areas of research which are yet unchartered. Thereby, we aim to provide a starting point for molecular imaging driven studies to understand and exploit metabolic features of lung cancer to optimize immune therapy.
Collapse
Affiliation(s)
- Evelien A J van Genugten
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Jetty A M Weijers
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Manfred Kneilling
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University, Tuebingen, Germany.,Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | | | - Berber Piet
- Department of Respiratory Diseases, Radboudumc, Nijmegen, Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre (UMC), Maastricht, Netherlands
| | - Erik H J G Aarntzen
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| |
Collapse
|