1
|
Cao T, Shen X, Pei F, Jiang T, Zhang J, Zhou H. Knockdown of Methylation-Related Gene MBD2 Blocks Cell Growth by Upregulating p21 Expression in Head and Neck Squamous Cell Carcinoma. Cancer Rep (Hoboken) 2024; 7:e70080. [PMID: 39676597 DOI: 10.1002/cnr2.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/22/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Methyl-CpG-binding domain 2 (MBD2) attaches to methylated DNA, which mediates methylated gene transcription, leading to gene silencing and affecting tumor progression. The molecular mechanisms of MBD2 in head and neck squamous cell carcinoma (HNSCC) remain insufficiently characterized. AIMS This study sought to assess the clinical relevance of MBD2 expression in HNSCC, with a particular focus on elucidating its functional role in tumor progression and its regulatory influence on p21 expression and cellular proliferation. METHODS We analyzed the relationships between MBD2 expression, clinicopathological features, and survival outcomes in HNSCC patients using data from the UALCAN, TCGA, and cBioPortal databases. The functional role of MBD2 in HNSCC was further investigated through in vitro experiments. p21 expression was assessed using western blotting and qRT-PCR in TU212 and AMC-HN8 cells. These cells were treated with either shRNA targeting MBD2, 5-azacytidine (5-Aza), or a combination of shRNA MBD2 and 5-Aza. Additionally, cell proliferation and viability were measured in each treatment group. RESULTS MBD2 was found to be frequently overexpressed in HNSCC tissues, and its altered expression was significantly associated with reduced overall survival (OS) and disease-free survival (DFS). Both shRNA-mediated MBD2 knockdown and 5-Aza treatment increased p21 expression in HNSCC cells, exhibiting similar functions with additive effects. Furthermore, both treatments significantly inhibited cell proliferation and viability. CONCLUSION These results indicated that shRNA-mediated MBD2 knockdown suppresses HNSCC cell growth by upregulating p21 expression. In addition to its role as an oncogene, MBD2 may serve as a prognostic biomarker and therapeutic target for HNSCC patients.
Collapse
Affiliation(s)
- Ting Cao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xia Shen
- Department of Otolaryngology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Fei Pei
- Department of Otolaryngology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Taogeng Jiang
- Department of Otolaryngology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Jun Zhang
- Department of Otolaryngology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Hong Zhou
- Department of Otolaryngology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Wang D, Chen J, Wu G, Xiong F, Liu W, Wang Q, Kuai Y, Huang W, Qi Y, Wang B, He R, Chen Y. MBD2 regulates the progression and chemoresistance of cholangiocarcinoma through interaction with WDR5. J Exp Clin Cancer Res 2024; 43:272. [PMID: 39350229 PMCID: PMC11440836 DOI: 10.1186/s13046-024-03188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a highly malignant, rapidly progressing tumor of the bile duct. Owing to its chemoresistance, it always has an extremely poor prognosis. Therefore, detailed elucidation of the mechanisms of chemoresistance and identification of therapeutic targets are still needed. METHODS We analyzed the expression of MBD2 (Methyl-CpG-binding domain 2) in CCA and normal bile duct tissues using the public database and immunohistochemistry (IHC). The roles of MBD2 in CCA cell proliferation, migration, and chemoresistance ability were validated through CCK-8, plate cloning assay, wound healing assays and xenograft mouse model. In addition, we constructed a primary CCA mouse model to further confirm the effect of MBD2. RNA-seq and co-IP-MS were used to identify the mechanisms by how MBD2 leads to chemoresistance. RESULTS MBD2 was upregulated in CCA. It promoted the proliferation, migration and chemoresistance of CCA cells. Mechanistically, MBD2 directly interacted with WDR5, bound to the promoter of ABCB1, promoted the trimethylation of H3K4 in this region through KMT2A, and activated the expression of ABCB1. Knocking down WDR5 or KMT2A blocked the transcriptional activation of ABCB1 by MBD2. The molecular inhibitor MM-102 targeted the interaction of WDR5 with KMT2A. MM-102 inhibited the expression of ABCB1 in CCA cells and decreased the chemoresistance of CCA to cisplatin. CONCLUSION MBD2 promotes the progression and chemoresistance of CCA through interactions with WDR5. MM-102 can effectively block this process and increase the sensitivity of CCA to cisplatin.
Collapse
Affiliation(s)
- Da Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Junsheng Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Guanhua Wu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Fei Xiong
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wenzheng Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Qi Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Yiyang Kuai
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Wenhua Huang
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430074, Hubei, China
| | - Yongqiang Qi
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run- Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Bing Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China.
| | - Yongjun Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China.
| |
Collapse
|
3
|
Sun R, Tu X, Chan S, Wang X, Ji Y, Wang Z, Yu Z, Zuo X, Zhang Q, Chen J, Han Q, Wang M, Zhao H, Zhang H, Chen W. CBX2 Deletion Suppresses Growth and Metastasis of Colorectal Cancer by Mettl3-p38/ERK MAPK Signalling Pathway. J Cancer 2024; 15:2123-2136. [PMID: 38495501 PMCID: PMC10937286 DOI: 10.7150/jca.92633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Colorectal cancer (CRC) seriously endangers human health owing to its high morbidity and mortality. Previous studies have suggested that high expression of CBX2 may be associated with poor prognosis in CRC patients. However, its functional role in CRC remains to be elucidated. Herein, we found that CBX2 overexpression in colorectal cancer tissue compared with adjacent tissues. Additionally, forest maps and the nomogram model indicated that elevated CBX2 expression was an independent prognostic factor in CRC. Moreover, we confirmed that the deletion of CBX2 markedly suppressed the proliferation and migration of CRC cells in vitro and in vivo. Furthermore, downregulation of CBX2 promotes CRC cell apoptosis and hinders the cell cycle. Mechanistically, our data demonstrated that deletion of CBX2 inhibited the MAPK signaling pathway by regulating the protein levels of Mettl3. In conclusion, our study demonstrated that CBX2 is a vital tumor suppressor in CRC and could be a promising anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Rui Sun
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Xucan Tu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Shixin Chan
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Xu Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yizhong Ji
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Zhenglin Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Zhen Yu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Xiaomin Zuo
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Qing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Jiajie Chen
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Qijun Han
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Ming Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Hu Zhao
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Huabing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Wei Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| |
Collapse
|
4
|
Chen Y, Zhu J, Chen L, Shen Y, Zhang J, Wang Q. SFRP4 +IGFBP5 hi NKT cells induced neural-like cell differentiation to contribute to adenomyosis pain. Front Immunol 2022; 13:945504. [PMID: 36532077 PMCID: PMC9750790 DOI: 10.3389/fimmu.2022.945504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Background Adenomyosis is an estrogen-dependent gynecological disease. The pathogenesis of chronic pain, the main clinical symptom of adenomyosis, remains undefined. As a combination lymphocyte with both T-cell and natural killer (NK)-cell properties, NK T (NKT) cells play a role in immune defense against numerous diseases and modulate cell differentiation. Method This study analyzed the tissue-cell samples from adenomyosis with or without pain by single-cell sequencing. Result We found a specific population of secreted frizzled-related protein 4 (SFRP4)+NKT cells and a large amount of undifferentiated multipotent stem cells in the adenomyosis pain group. We discovered that a high expression of IGFBP5 in SFRP4+NKT cells could promote the differentiation of multipotent stem cells into neural-like cells via the single-cell trajectory. Through verification by the sample, we found that the degree of the expression of the neuronal marker NEFM was correlated with the duration of pain in adenomyosis patients. The expression of IGFBP5 was positively correlated with the pain scores of adenomyosis patients. Conclusion Collectively, these findings suggest that SFRP4+IGFBP5hi NKT cells were capable of converting part of the stem cells into neurogenic cells and inducing adenomyosis pain.
Collapse
Affiliation(s)
| | | | | | | | - Jing Zhang
- *Correspondence: Jing Zhang, ; Qiming Wang,
| | | |
Collapse
|
5
|
Zheng L, Duan SL, Wen XL, Dai YC. Molecular regulation after mucosal injury and regeneration in ulcerative colitis. Front Mol Biosci 2022; 9:996057. [PMID: 36310594 PMCID: PMC9606627 DOI: 10.3389/fmolb.2022.996057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease with a complex etiology. Intestinal mucosal injury is an important pathological change in individuals with UC. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5+) intestinal stem cells (ISCs) exhibit self-renewal and high differentiation potential and play important roles in the repair of intestinal mucosal injury. Moreover, LGR5+ ISCs are intricately regulated by both the Wnt/β-catenin and Notch signaling pathways, which jointly maintain the function of LGR5+ ISCs. Combination therapy targeting multiple signaling pathways and transplantation of LGR5+ ISCs may lead to the development of new clinical therapies for UC.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yan-Cheng Dai,
| |
Collapse
|
6
|
Wu J, Huang Q, Li Q, Gu Y, Zhan Y, Wang T, Chen J, Zeng Z, Lv Y, Zhao J, Xia J, Xie J. Increased Methyl-CpG-Binding Domain Protein 2 Promotes Cigarette Smoke-Induced Pulmonary Hypertension. Front Oncol 2022; 12:879793. [PMID: 35785161 PMCID: PMC9243313 DOI: 10.3389/fonc.2022.879793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary hypertension (PH) is a chronic vascular proliferative disorder. While cigarette smoke (CS) plays a vital part in PH related to chronic obstructive pulmonary disease (COPD). Methyl-CpG-Binding Domain Protein 2 (MBD2) has been linked to multiple proliferative diseases. However, the specific mechanisms of MBD2 in CS-induced PH remain to be elucidated. Herein, the differential expression of MBD2 was tested between the controls and the PH patients’ pulmonary arteries, CS-exposed rat models’ pulmonary arteries, and primary human pulmonary artery smooth muscle cells (HPASMCs) following cigarette smoke extract (CSE) stimulation. As a result, PH patients and CS-induced rats and HPASMCs showed an increase in MBD2 protein expression compared with the controls. Then, MBD2 silencing was used to investigate the function of MBD2 on CSE-induced HPASMCs’ proliferation, migration, and cell cycle progression. As a consequence, CSE could induce HPASMCs’ increased proliferation and migration, and cell cycle transition, which were suppressed by MBD2 interference. Furthermore, RNA-seq, ChIP-qPCR, and MassARRAY were conducted to find out the downstream mechanisms of MBD2 for CS-induced pulmonary vascular remodeling. Subsequently, RNA-seq revealed MBD2 might affect the transcription of BMP2 gene, which furtherly altered the expression of BMP2 protein. ChIP-qPCR demonstrated MBD2 could bind BMP2’s promotor. MassARRAY indicated that MBD2 itself could not directly affect DNA methylation. In sum, our results indicate that increased MBD2 expression promotes CS-induced pulmonary vascular remodeling. The fundamental mechanisms may be that MBD2 can bind BMP2’s promoter and downregulate its expression. Thus, MBD2 may promote the occurrence of the CS-induced PH.
Collapse
Affiliation(s)
- Jixing Wu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinghai Li
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinkun Chen
- Department of Science, Western University, London, ON, Canada
| | - Zhilin Zeng
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Xia
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jungang Xie, ; Jie Xia,
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jungang Xie, ; Jie Xia,
| |
Collapse
|