1
|
Allon I, Pettesh J, Livoff A, Schlapobersky M, Nahlieli O, Michaeli E. Voltage-Dependent Anion Channel 1 Expression in Oral Malignant and Premalignant Lesions. Diagnostics (Basel) 2023; 13:diagnostics13071225. [PMID: 37046443 PMCID: PMC10093190 DOI: 10.3390/diagnostics13071225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND The voltage-dependent anion channel 1 protein (VDAC1) plays a role in cellular metabolism and survival. It was found to be down or upregulated (overexpressed) in different malignancies but it was never studied in application to oral lesions. The purpose of this study was to retrospectively evaluate the expression of VDAC1 in biopsies of oral premalignant, malignant, and malignancy-neutral lesions and to examine the possible correlations to their clinicopathological parameters. MATERIALS AND METHODS 103 biopsies including 49 oral squamous cell carcinoma, 33 epithelial dysplasia, and 21 fibrous hyperplasia samples were immunohistochemically stained with anti-VDAC1 antibodies for semi-quantitative evaluation. The antibody detection was performed with 3,3'-diaminobenzidine (DAB). The clinicopathological information was examined for possible correlations with VDAC1. RESULTS VDAC1 expression was lower in oral squamous cell carcinoma 0.63 ± 0.40 and in oral epithelial dysplasia 0.61 ± 0.36 biopsies compared to fibrous hyperplasia biopsies 1.45 ± 0.28 (p < 0.01 for both; Kruskal-Wallis test). CONCLUSION Oral squamous cell carcinoma and epithelial dysplasia tissues demonstrated decreased VDAC1 protein expression if compared to fibrous hyperplasia samples, but were not different from each other, suggesting that the involvement of VDAC1 in oral carcinogenesis is an early stage event, regulating cells to live or die.
Collapse
Affiliation(s)
- Irit Allon
- Institute of Pathology, Barzilai University Medical Center, Ashkelon 7830604, Israel
- School of Health Sciences, The Ben-Gurion University of the Negev, Beer-Sheba 84105, Israel
| | - Jacob Pettesh
- Oral Medicine Unit, Barzilai University Medical Center, Ashkelon 7830604, Israel
| | - Alejandro Livoff
- Institute of Pathology, Barzilai University Medical Center, Ashkelon 7830604, Israel
| | - Mark Schlapobersky
- Institute of Pathology, Barzilai University Medical Center, Ashkelon 7830604, Israel
| | - Oded Nahlieli
- School of Health Sciences, The Ben-Gurion University of the Negev, Beer-Sheba 84105, Israel
- Department of Oral & Maxillofacial Surgery, Barzilai University Medical Center, Ashkelon 7830604, Israel
| | - Eli Michaeli
- School of Health Sciences, The Ben-Gurion University of the Negev, Beer-Sheba 84105, Israel
| |
Collapse
|
2
|
A Five Collagen-Related Gene Signature to Estimate the Prognosis and Immune Microenvironment in Clear Cell Renal Cell Cancer. Vaccines (Basel) 2021; 9:vaccines9121510. [PMID: 34960256 PMCID: PMC8707639 DOI: 10.3390/vaccines9121510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022] Open
Abstract
Collagen is the main component of the extracellular matrix (ECM) and might play an important role in tumor microenvironments. However, the relationship between collagen and clear cell renal cell cancer (ccRCC) is still not fully clarified. Hence, we aimed to establish a collagen-related signature to predict the prognosis and estimate the tumor immune microenvironment in ccRCC patients. Patients with a high risk score were often correlated with unfavorable overall survival (OS) and an immunosuppressive microenvironment. In addition, the collagen-related genetic signature was highly correlated with clinical pathological features and can be considered as an independent prognostic factor in ccRCC patients. Moreover, GSEA results show that patients with a high risk grade tend to be associated with epithelial–mesenchymal junctions (EMT) and immune responses. In this study, we developed a collagen-related gene signature, which might possess the potential to predict the prognosis and immune microenvironment of ccRCC patients and function as an independent prognostic factor in ccRCC.
Collapse
|
3
|
Ma F, Laster K, Nie W, Liu F, Kim DJ, Lee MH, Bai R, Yang R, Liu K, Dong Z. Heterogeneity Analysis of Esophageal Squamous Cell Carcinoma in Cell Lines, Tumor Tissues and Patient-Derived Xenografts. J Cancer 2021; 12:3930-3944. [PMID: 34093800 PMCID: PMC8176252 DOI: 10.7150/jca.52286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 04/22/2021] [Indexed: 11/05/2022] Open
Abstract
Esophageal Squamous Cell Carcinoma (ESCC) is the predominant type of Esophageal Cancer (EC), accounting for nearly 88% of EC incidents worldwide. Importantly, it is also a life-threatening cancer for patients diagnosed in advanced stages, with only a 20% 5-year survival rate due to a limited number of actionable targets and therapeutic options. Increasing evidence has shown that inter-tumor and intra-tumor heterogeneity are widely distributed across ESCC tumor tissues. In our work, multi-omics data from ESCC cell lines, tumor tissue, normal tissue and Patient-Derived Xenograft (PDX) tissues were analyzed to investigate the heterogeneity among ESCC samples at the DNA, RNA, and protein level. We identified enrichment of ECM-receptor interaction and Focal adhesion pathways from the subset of protein-coding genes with non-silent mutations in ESCC patients. We also found that TP53, TTN, KMT2D, CSMD3, DNAH5, MUC16 and DST are the most frequently mutated genes in ESCC patient samples. Out of the identified genes, TP53 is the most frequently mutated, with 84 distinct non-silent mutation variants. We observed that p.R248Q, p.R175G/H, and p.R273C/H are the most common TP53 mutation variants. The diversity of TP53 mutations reveal its importance in ESCC progression and may also provide promising targets for precision therapeutics. Additionally, we identified the Olfactory transduction as the top signaling pathway, enriched from genes uniquely expressed in The Cancer Genome Atlas (TCGA)-ESCC patient tumor tissues, which may provide implications for the exact roles of the corresponding genes in ESCC. Cyclic nucleotide-gated channel subunit beta 1(CNGB1), a gene belonging to the Olfactory transduction pathway, was found exclusively overexpressed in ESCC. Expression of CNGB1 could serve as a marker, indicating potential diagnostic or therapeutic value. Finally, we investigated heterogeneity in the context of the ESCC PDX model, which is an emerging tool used to predict drug response and recapitulate tumor behavior in vivo. We observed trans-species heterogeneity in as high as 75% of the identified proteins, indicating that the ambiguity of proteins should be addressed by specific strategies to avoid drawing false conclusions. The identification and characterization of gene mutation and expression heterogeneity across different ESCC datasets, including various novel TP53 mutations, ECM-receptor interaction, Focal adhesion, and Olfactory transduction pathways (CNGB1), provide researchers with evidence and implications for accurate research and precision therapeutic development.
Collapse
Affiliation(s)
- Fayang Ma
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China
| | - Kyle Laster
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China
| | - Wenna Nie
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China
| | - Fangfang Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China
| | - Dong Joon Kim
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China.,College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do, 58245, Republic of Korea
| | - Ruihua Bai
- Department of Pathology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450008, China
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China.,Department of Pathology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450008, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China.,Department of Pathology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450008, China
| |
Collapse
|
4
|
Guo C, Jiang X, Guo J, Wu Y, Bao G. Integrated bioinformatic analysis identifies COL4A3, COL4A4, and KCNJ1 as key biomarkers in Wilms tumor. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:196-208. [PMID: 33564352 PMCID: PMC7868786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Wilms tumor (WT) is one of the most common pediatric solid tumors, affecting 1 in 10,000 children, worldwide. A subset of WT patients has poor prognosis, which is associated with a high risk of advanced and/or recurrent disease. Therefore, candidate markers are urgently needed for the diagnosis and effective treatment of WT. We evaluated three mRNA microarray datasets to identify the differences between normal kidney tissue and WT tissue. Gene expression profiling revealed 130 differentially expressed genes (DEGs). Enrichment analysis and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed for the DEGs. Subsequently, we established a protein-protein interaction (PPI) network to reveal the associations among the DEGs and selected 10 hub genes, all of which were downregulated in WT. The expression of COL4A3, COL4A4, KCNJ1, MME, and SLC12A1 in WT tissues was significantly lower than that in normal renal tissues. Survival analyses using the Kaplan-Meier method showed that patients with WT and low expression of COL4A3, COL4A4, and KCNJ1 exhibited remarkably poor overall survival. The correlations among COL4A3, COL4A4, and KCNJ1 in WT were analyzed using cBioPortal; COL4A3, COL4A4, and KCNJ1 were positively correlated with each other. Thus, these genes were considered clinically significant and might therefore play important roles in carcinogenesis and the development of WT.
Collapse
Affiliation(s)
- Changgang Guo
- Department of Urology, Affiliated Hospital of Chifeng UniversityChifeng 024000, China
- Urology Research Center, Chifeng UniversityChifeng 024000, China
| | - Xiling Jiang
- Department of Stomatology, Affiliated Hospital of Chifeng UniversityChifeng 024000, China
| | - Junsheng Guo
- Department of Urology, Affiliated Hospital of Chifeng UniversityChifeng 024000, China
- Urology Research Center, Chifeng UniversityChifeng 024000, China
| | - Yanlong Wu
- Department of Urology, Affiliated Hospital of Chifeng UniversityChifeng 024000, China
| | - Guochang Bao
- Department of Urology, Affiliated Hospital of Chifeng UniversityChifeng 024000, China
- Urology Research Center, Chifeng UniversityChifeng 024000, China
| |
Collapse
|
5
|
Zeng X, Wang HY, Wang YP, Bai SY, Pu K, Zheng Y, Guo QH, Guan QL, Ji R, Zhou YN. COL4A family: potential prognostic biomarkers and therapeutic targets for gastric cancer. Transl Cancer Res 2020; 9:5218-5232. [PMID: 35117889 PMCID: PMC8799138 DOI: 10.21037/tcr-20-517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Background The type IV collagen alpha chain (COL4A) family is a major component of the basement membrane (BM) that has recently been found to be involved in tumor angiogenesis and progression. However, the expression levels and the exact roles of distinct COL4A family members in gastric cancer (GC) have not been completely understood. Methods Here, the expression levels of COL4As in GC and normal gastric tissues were calculated by using TCGA datasets and the predicted prognostic values by the GEPIA tool. Furthermore, the cBioPortal and Metascape tools were integrated to analyze the genetic alterations, correlations and potential functions of COL4As, and their frequently altered neighboring genes in GC. Results Notably, the expression levels of COL4A1/2/4 in GC were higher to those in normal gastric tissues, while the expression levels of COL4A3/5/6 were lower in GC than normal. Survival analysis revealed that lower expression levels of COL4A1/5 led to higher overall survival (OS) rate. Multivariate analysis using the Cox proportional-hazards model indicated that age, gender, pathological grade, metastasis and COL4A5 expression, are independent prognostic factors for OS. However, TNM stage, lymph node metastasis, Lauren’s classification, COL4A1-4 and COL4A6 were associated with poor OS but not independent prognostic factors. Function-enriched analysis of COL4As and their frequently altered neighboring genes was involved in tumor proliferation and metastasis in GC. Conclusions These results implied that COL4A1/2 were potential therapeutic targets for GC. COL4A3/4/6 might have an impact on gastric carcinogenesis and subsequent progression, whereas COL4A5 was an independent prognostic marker for GC.
Collapse
Affiliation(s)
- Xi Zeng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Hao-Ying Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yu-Ping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Su-Yang Bai
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Ke Pu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Qing-Hong Guo
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Quan-Lin Guan
- Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Rui Ji
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yong-Ning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Li J, Wang X, Zheng K, Liu Y, Li J, Wang S, Liu K, Song X, Li N, Xie S, Wang S. The clinical significance of collagen family gene expression in esophageal squamous cell carcinoma. PeerJ 2019; 7:e7705. [PMID: 31598423 PMCID: PMC6779144 DOI: 10.7717/peerj.7705] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a subtype of esophageal cancer with high incidence and mortality. Due to the poor 5-year survival rates of patients with ESCC, exploring novel diagnostic markers for early ESCC is emergent. Collagen, the abundant constituent of extracellular matrix, plays a critical role in tumor growth and epithelial-mesenchymal transition. However, the clinical significance of collagen genes in ESCC has been rarely studied. In this work, we systematically analyzed the gene expression of whole collagen family in ESCC, aiming to search for ideal biomarkers. METHODS Clinical data and gene expression profiles of ESCC patients were collected from The Cancer Genome Atlas and the gene expression omnibus databases. Bioinformatics methods, including differential expression analysis, survival analysis, gene sets enrichment analysis (GSEA) and co-expression network analysis, were performed to investigate the correlation between the expression patterns of 44 collagen family genes and the development of ESCC. RESULTS A total of 22 genes of collagen family were identified as differentially expressed genes in both the two datasets. Among them, COL1A1, COL10A1 and COL11A1 were particularly up-regulated in ESCC tissues compared to normal controls, while COL4A4, COL6A5 and COL14A1 were notably down-regulated. Besides, patients with low COL6A5 expression or high COL18A1 expression showed poor survival. In addition, a 7-gene prediction model was established based on collagen gene expression to predict patient survival, which had better predictive accuracy than the tumor-node-metastasis staging based model. Finally, GSEA results suggested that collagen genes might be tightly associated with PI3K/Akt/mTOR pathway, p53 pathway, apoptosis, cell cycle, etc. CONCLUSION Several collagen genes could be potential diagnostic and prognostic biomarkers for ESCC. Moreover, a novel 7-gene prediction model is probably useful for predicting survival outcomes of ESCC patients. These findings may facilitate early detection of ESCC and help improves prognosis of the patients.
Collapse
Affiliation(s)
- Jieling Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiao Wang
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Ying Liu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Junjun Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Shaoqi Wang
- Department of Oncology, Hubei Provincial Corps Hospital, Chinese People Armed Police Forces, Wuhan, China
| | - Kaisheng Liu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Xun Song
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Nan Li
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Shouxia Xie
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
7
|
Yan J, Jiang Y, Lu J, Wu J, Zhang M. Inhibiting of Proliferation, Migration, and Invasion in Lung Cancer Induced by Silencing Interferon-Induced Transmembrane Protein 1 (IFITM1). BIOMED RESEARCH INTERNATIONAL 2019; 2019:9085435. [PMID: 31205947 PMCID: PMC6530206 DOI: 10.1155/2019/9085435] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/27/2019] [Accepted: 04/18/2019] [Indexed: 01/09/2023]
Abstract
Interferon-induced transmembrane protein 1 (IFITM1), a 17-kDa membrane protein, is generally known as a modulator in many cellular functions. Recent studies showed overexpression of IFITM1 in cancers and relationship between IFITM1 overexpression and tumor progression. However, the role of IFITM1 in lung cancer remains unclear. Here, we presented the overexpression of IFITM1 in lung cancer tissues and cell lines A549 and H460 using quantitative Real-Time RT-PCR. In vitro assay indicated IFITM1 silencing inhibited lung cancer cell proliferation, migration, and invasion. Further, in vivo assay showed that IFITM1 silencing markedly suppressed cell growth and metastasis of lung cancer in tumor-bearing BALB/c nude mice. Mechanistically, we found that IFITM1 silencing significantly alleviated the protein levels of β-catenin, cyclin D1, and c-Mycin lung cancer cells and tumor samples. Taken together, our study revealed the role of IFITM1 as a tumor promoter during lung cancer development and the possible molecular mechanism.
Collapse
Affiliation(s)
- Jun Yan
- Department of Pathology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Ying Jiang
- Department of Pathology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Jianfeng Lu
- Department of Pathology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Jianhui Wu
- Department of Pathology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Mingfang Zhang
- Department of Pathology, Tianjin First Center Hospital, Tianjin 300192, China
| |
Collapse
|
8
|
Yang YG, Koh YW, Sari IN, Jun N, Lee S, Phi LTH, Kim KS, Wijaya YT, Lee SH, Baek MJ, Jeong D, Kwon HY. Interferon-induced transmembrane protein 1-mediated EGFR/SOX2 signaling axis is essential for progression of non-small cell lung cancer. Int J Cancer 2018; 144:2020-2032. [PMID: 30318841 PMCID: PMC6587945 DOI: 10.1002/ijc.31926] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/20/2018] [Accepted: 09/24/2018] [Indexed: 01/19/2023]
Abstract
Emerging data indicate that interferon‐induced transmembrane protein 1 (IFITM1) plays an important role in many cancers. However, it remains unclear whether IFITM1 is functionally indispensable in nonsmall cell lung cancer (NSCLC). Here, using NSCLC cell lines and patient‐derived samples, we show that IFITM1 is essentially required for the progression of NSCLC in vitro and in vivo. Specifically, IFITM1 depletion resulted in a significant reduction in sphere formation, migration, and invasion of NSCLC cells in vitro; these events were inversely correlated with the ectopic expression of IFITM1. In addition, tumor development was significantly impaired in the absence of IFITM1 in vivo. Mechanistically, epidermal growth factor receptor/sex‐determining region Y‐box 2 (EGFR/SOX2) signaling axis was compromised in the absence of IFITM1, and the ectopic expression of SOX2 partially rescued the defects caused by IFITM1 depletion. More importantly, using 226 patient‐derived samples, we demonstrate that a high level of IFITM1 expression is associated with a poor overall survival (OS) rate in adenocarcinoma but not in squamous cell carcinoma. Collectively, these data suggest that IFITM1 is a poor prognostic marker of adenocarcinoma and an attractive target to develop novel therapeutics for NSCLC. What's new? Interferon response genes play key roles in pathogen defense but emerging evidence also link them with cancer. The authors report that interferon‐induced transmembrane protein 1 (IFITM1) critically regulates epidermal growth factor receptor‐mediated signaling in nonsmall lung cancer models and is associated with a poor prognosis of patients with adenocarcinoma. This expands the function of this innate defense factor and might lead to improved clinical management of individuals afflicted with lung cancer.
Collapse
Affiliation(s)
- Ying-Gui Yang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Young Wha Koh
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Nayoung Jun
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Sanghyun Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Lan Thi Hanh Phi
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Kwang Seock Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Yoseph Toni Wijaya
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Moo-Jun Baek
- Department of surgery, College of medicine, Soonchunhyang University, Republic of Korea
| | - Dongjun Jeong
- Department of Pathology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyog Young Kwon
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
9
|
Sari IN, Yang YG, Phi LTH, Kim H, Baek MJ, Jeong D, Kwon HY. Interferon-induced transmembrane protein 1 (IFITM1) is required for the progression of colorectal cancer. Oncotarget 2018; 7:86039-86050. [PMID: 27852071 PMCID: PMC5349895 DOI: 10.18632/oncotarget.13325] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022] Open
Abstract
Interferon-induced transmembrane protein 1 (IFITM1) has been shown to be implicated in multiple cancers, yet little is known about biological significance of IFITM1 in colorectal cancer. Here, we show that IFITM1 is highly expressed in metastatic colorectal cancer cell lines as well as colorectal patient-derived tumor samples, and its expression is associated with a poor prognosis of the disease. Also, IFITM1 depletion resulted in a significant reduction in the mobility of cancer cell lines, whereas ectopic expression of IFITM1 promoted the migration of cancer cells. Epithelial-mesenchymal transition (EMT) signature was dysregulated by both loss and gain of function of IFITM1, which was partially reverted by Caveolin-1 (CAV1). Therefore, these results suggest that IFITM1 may be a prognostic marker and an attractive target to achieve better therapeutic outcomes in colorectal cancer.
Collapse
Affiliation(s)
- Ita Novita Sari
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Republic of Korea
| | - Ying-Gui Yang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Republic of Korea
| | - Lan Thi Hanh Phi
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Republic of Korea
| | - Hyungjoo Kim
- Soonchunhyang Medical Science Research Institute, College of Medicine, Soonchunhyang University, Republic of Korea
| | - Moo Jun Baek
- Department of Surgery, Department of Pathology, College of Medicine, Soonchunhyang University, Republic of Korea
| | - Dongjun Jeong
- Soonchunhyang Medical Science Research Institute, College of Medicine, Soonchunhyang University, Republic of Korea
| | - Hyog Young Kwon
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Republic of Korea
| |
Collapse
|
10
|
Fu Y, Zhou Z, Wang H, Gong P, Guo R, Wang J, Lu X, Qi F, Liu L. IFITM1 suppresses expression of human endogenous retroviruses in human embryonic stem cells. FEBS Open Bio 2017; 7:1102-1110. [PMID: 28781951 PMCID: PMC5537067 DOI: 10.1002/2211-5463.12246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/15/2017] [Indexed: 12/03/2022] Open
Abstract
Interferon‐induced transmembrane protein 1 (IFITM1), a member of the IFITM protein family, is a component of a multimeric complex involved in the transduction of antiproliferation and cell adhesion signals. IFITM1 is thought to play a role in antiproliferation and immune surveillance, and has been shown to restrict infection by numerous viruses. It is highly expressed in human embryonic stem cells (hESCs) but its role in hESCs remains to be elucidated. In this study, knockout of IFITM1 mediated by CRISPR/Cas9 in hESCs did not affect self‐renewal, pluripotency, telomerase activity or telomeres. However expression of human endogenous retroviruses (HERVs) was higher than in wild‐type hESCs, and there was also a reduced level of trimethylation of histone H3 on lysine 9 at HERV loci. These data show that IFITM1 suppresses HERVs in hESCs by regulating epigenetic modifications.
Collapse
Affiliation(s)
- Yudong Fu
- State Key Laboratory of Medicinal Chemical Biology College of Life Sciences Nankai University Tianjin China.,Department of Cell Biology and Genetics College of Life Sciences Nankai University Tianjin China
| | - Zhongcheng Zhou
- State Key Laboratory of Medicinal Chemical Biology College of Life Sciences Nankai University Tianjin China.,Department of Cell Biology and Genetics College of Life Sciences Nankai University Tianjin China
| | - Hua Wang
- State Key Laboratory of Medicinal Chemical Biology College of Life Sciences Nankai University Tianjin China.,Department of Cell Biology and Genetics College of Life Sciences Nankai University Tianjin China
| | - Peng Gong
- State Key Laboratory of Medicinal Chemical Biology College of Life Sciences Nankai University Tianjin China.,Department of Cell Biology and Genetics College of Life Sciences Nankai University Tianjin China
| | - Renpeng Guo
- State Key Laboratory of Medicinal Chemical Biology College of Life Sciences Nankai University Tianjin China.,Department of Cell Biology and Genetics College of Life Sciences Nankai University Tianjin China
| | - Jinmiao Wang
- Department of General Surgery Tianjin Medical University General Hospital China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology College of Life Sciences Nankai University Tianjin China.,College of Pharmacy Nankai University Tianjin China
| | - Feng Qi
- Department of General Surgery Tianjin Medical University General Hospital China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology College of Life Sciences Nankai University Tianjin China.,Department of Cell Biology and Genetics College of Life Sciences Nankai University Tianjin China
| |
Collapse
|
11
|
Lui AJ, Geanes ES, Ogony J, Behbod F, Marquess J, Valdez K, Jewell W, Tawfik O, Lewis-Wambi J. IFITM1 suppression blocks proliferation and invasion of aromatase inhibitor-resistant breast cancer in vivo by JAK/STAT-mediated induction of p21. Cancer Lett 2017; 399:29-43. [PMID: 28411130 DOI: 10.1016/j.canlet.2017.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/23/2017] [Accepted: 04/04/2017] [Indexed: 12/19/2022]
Abstract
Interferon induced transmembrane protein 1 (IFITM1) belongs to a family of interferon stimulated genes (ISGs) that is associated with tumor progression and DNA damage resistance; however, its role in endocrine resistance is not known. Here, we correlate IFITM1 expression with clinical stage and poor response to endocrine therapy in a tissue microarray consisting of 94 estrogen receptor (ER)-positive breast tumors. IFITM1 overexpression is confirmed in the AI-resistant MCF-7:5C cell line and not found in AI-sensitive MCF-7 cells. In this study, the orthotopic (mammary fat pad) and mouse mammary intraductal (MIND) models of breast cancer are used to assess tumor growth and invasion in vivo. Lentivirus-mediated shRNA knockdown of IFITM1 in AI-resistant MCF-7:5C cells diminished tumor growth and invasion and induced cell death, whereas overexpression of IFITM1 in wild-type MCF-7 cells promoted estrogen-independent growth and enhanced their aggressive phenotype. Mechanistic studies indicated that loss of IFITM1 in MCF-7:5C cells markedly increased p21 transcription, expression and nuclear localization which was mediated by JAK/STAT activation. These findings suggest IFITM1 overexpression contributes to breast cancer progression and that targeting IFITM1 may be therapeutically beneficial to patients with endocrine-resistant disease.
Collapse
Affiliation(s)
- Asona J Lui
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, USA; The University of Kansas Cancer Center, Kansas City, KS 66160, USA.
| | - Eric S Geanes
- Department of Cancer Biology, University of Kansas Medical Center, USA; The University of Kansas Cancer Center, Kansas City, KS 66160, USA.
| | - Joshua Ogony
- Department of Cancer Biology, University of Kansas Medical Center, USA; The University of Kansas Cancer Center, Kansas City, KS 66160, USA.
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, USA; The University of Kansas Cancer Center, Kansas City, KS 66160, USA.
| | - Jordan Marquess
- University of Kansas Medical Center School of Medicine, USA.
| | - Kelli Valdez
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, USA; The University of Kansas Cancer Center, Kansas City, KS 66160, USA.
| | - William Jewell
- The University of Kansas Cancer Center, Kansas City, KS 66160, USA.
| | - Ossama Tawfik
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, USA.
| | - Joan Lewis-Wambi
- Department of Cancer Biology, University of Kansas Medical Center, USA; The University of Kansas Cancer Center, Kansas City, KS 66160, USA.
| |
Collapse
|
12
|
Borg D, Hedner C, Gaber A, Nodin B, Fristedt R, Jirström K, Eberhard J, Johnsson A. Expression of IFITM1 as a prognostic biomarker in resected gastric and esophageal adenocarcinoma. Biomark Res 2016; 4:10. [PMID: 27186374 PMCID: PMC4867989 DOI: 10.1186/s40364-016-0064-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There is an increasing amount of reports on IFITM1 (interferon-inducible transmembrane protein 1) in various malignancies. The aim of this study was to examine the expression of IFITM1 and its prognostic significance in gastroesophageal adenocarcinoma. METHODS Tissue samples were obtained from a consecutive cohort of 174 patients surgically treated between 2006 and 2010 for gastroesophageal (gastric, gastroesophageal junction and esophageal) adenocarcinoma, not subjected to neoadjuvant therapy. Expression of IFITM1 was examined using immunohistochemistry on tissue microarrays of primary tumors and paired samples of adjacent normal epithelium, intestinal metaplasia and lymph node metastases. RESULTS Expression of IFITM1 was significantly elevated in primary tumors and lymph node metastases compared to adjacent normal epithelium and intestinal metaplasia, regardless of tumor location. Overexpression of IFITM1 was associated with M0-disease (no distant metastases). In gastric cancer IFITM1 expression was significantly associated with improved TTR (time to recurrence) in Kaplan-Meier analysis and Cox regression, both in the unadjusted analysis (HR 0.33, 95 % CI 0.12-0.88) and in the adjusted analysis (HR 0.32, 95 % CI 0.12-0.87) but there was no significant impact on OS (overall survival). In esophageal adenocarcinoma expression of IFITM1 had no impact on TTR or OS in Kaplan-Meier-analyses, but in the adjusted Cox regression IFITM1 expression had a negative impact on both TTR (HR 3.05, 95 % CI 1.09-8.53) and OS (HR 2.71, 95 % CI 1.11-6.67). CONCLUSIONS IFITM1 was overexpressed in gastroesophageal adenocarcinoma and associated with M0-disease. In gastric cancer IFITM1 expression had a positive impact on TTR but in esophageal cancer it seemed to have an adverse impact on survival. The reason for the diverging prognostic impact of IFITM1 in esophageal and gastric cancer is unclear and warrants further studies.
Collapse
Affiliation(s)
- David Borg
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Charlotta Hedner
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Alexander Gaber
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Björn Nodin
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Richard Fristedt
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Jakob Eberhard
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Anders Johnsson
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| |
Collapse
|
13
|
He J, Li J, Feng W, Chen L, Yang K. Prognostic significance of INF-induced transmembrane protein 1 in colorectal cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:16007-16013. [PMID: 26884876 PMCID: PMC4730089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
Interferon-induced transmembrane protein 1 (IFITM1) has recently been implicated in tumorigenesis. However, the prognostic value of IFITM1 in colorectal cancer remains unknown. The present study aimed to examine the expression and prognostic significance of IFITM1 in human colorectal cancer. IFITM1 expression was analyzed in 144 archived, paraffin-embedded colorectal cancer tissues and corresponding normal colorectal mucosa by immunohistochemistry. The correlation of IFITM1 with clinic-pathological features and overall survival of colorectal cancer patients was evaluated. IFITM1 was overexpressed in colonic cancer tissues but not in rectal cancer tissues, compared to control normal tissues. The expression of IFITM1 was significantly higher in patients with poor differentiation (P=0.031). The patients with higher IFITM1 expression had worse overall survival outcomes than those with lower IFITM1 expression in rectal cancer (P=0.037). Univariate Cox regression suggested that older age and poorly differentiation status predict shorter overall survival in colorectal cancer (P<0.05). However, IFITM1 expression was not a significant prognostic factor for survival by univariate or multivariate analyses. In conclusion, high expression of IFITM1 is associated with poor prognosis of rectal cancer. IFITM1 may serve as an independent prognostic biomarker for colorectal cancer.
Collapse
Affiliation(s)
- Jingdong He
- Department of Oncology, Huai’an First People’s Hospital, Nanjing Medical UniversityHuai’an, Jiangsu, China
| | - Jin Li
- Department of Oncology, Huai’an First People’s Hospital, Nanjing Medical UniversityHuai’an, Jiangsu, China
| | - Wanting Feng
- Department of Oncology, Huai’an First People’s Hospital, Nanjing Medical UniversityHuai’an, Jiangsu, China
| | - Longbang Chen
- Department of Oncology, Jinling Hospital, Nanjing UniversityNanjing, Jiangsu, China
| | - Kangqun Yang
- Department of Pharmacy, Huai’an First People’s Hospital, Nanjing Medical UniversityHuai’an, Jiangsu, China
| |
Collapse
|
14
|
Singh V, Singh LC, Singh AP, Sharma J, Borthakur BB, Debnath A, Rai AK, Phukan RK, Mahanta J, Kataki AC, Kapur S, Saxena S. Status of epigenetic chromatin modification enzymes and esophageal squamous cell carcinoma risk in northeast Indian population. Am J Cancer Res 2015; 5:979-999. [PMID: 26045981 PMCID: PMC4449430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/10/2015] [Indexed: 06/04/2023] Open
Abstract
Esophageal cancer incidence is reported in high frequency in northeast India. The etiology is different from other population at India due to wide variations in dietary habits or nutritional factors, tobacco/betel quid chewing and alcohol habits. Since DNA methylation, histone modification and miRNA-mediated epigenetic processes alter the gene expression, the involvement of these processes might be useful to find out epigenetic markers of esophageal cancer risk in northeast Indian population. The present investigation was aimed to carryout differential expression profiling of chromatin modification enzymes in tumor and normal tissue collected from esophageal squamous cell carcinoma (ESCC) patients. Differential mRNA expression profiling and their validation was done by quantitative real time PCR and tissue microarray respectively. Univariate and multiple logistic regression analysis were used to analyze the epidemiological data. mRNA expression data was analyzed by Student t-test. Fisher exact test was used for tissue microarray data analysis. Higher expression of enzymes regulating methylation (DOT1L and PRMT1) and acetylation (KAT7, KAT8, KAT2A and KAT6A) of histone was found associated with ESCC risk. Tissue microarray done in independent cohort of 75 patients revealed higher nuclear protein expression of KAT8 and PRMT1 in tumor similar to mRNA expression. Expression status of PRMT1 and KAT8 was found declined as we move from low grade to high grade tumor. Betel nut chewing, alcohol drinking and dried fish intake were significantly associated with increased risk of esophageal cancer among the study subject. Study suggests the association of PRMT1 and KAT8 with esophageal cancer risk and its involvement in the transition process of low to high grade tumor formation. The study exposes the differential status of chromatin modification enzymes between tumor and normal tissue and points out that relaxed state of chromatin facilitates more transcriptionally active genome in esophageal carcinogenesis.
Collapse
Affiliation(s)
- Virendra Singh
- National Institute of Pathology (Indian Council of Medical Research)New Delhi-110029, India
| | - Laishram C Singh
- National Institute of Pathology (Indian Council of Medical Research)New Delhi-110029, India
| | - Avninder P Singh
- National Institute of Pathology (Indian Council of Medical Research)New Delhi-110029, India
| | | | | | | | - Avdhesh K Rai
- B Borooah Cancer Institute (BBCI)Guwahati-781016, Assam, India
| | - Rup K Phukan
- Regional Medical Research Centre (RMRC)Dibrugadh-786001, Assam, India
| | - Jagadish Mahanta
- Regional Medical Research Centre (RMRC)Dibrugadh-786001, Assam, India
| | - Amal C Kataki
- B Borooah Cancer Institute (BBCI)Guwahati-781016, Assam, India
| | - Sujala Kapur
- National Institute of Pathology (Indian Council of Medical Research)New Delhi-110029, India
| | - Sunita Saxena
- National Institute of Pathology (Indian Council of Medical Research)New Delhi-110029, India
| |
Collapse
|
15
|
Kauppila JH, Selander KS. Toll-like receptors in esophageal cancer. Front Immunol 2014; 5:200. [PMID: 24847326 PMCID: PMC4019875 DOI: 10.3389/fimmu.2014.00200] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/23/2014] [Indexed: 12/13/2022] Open
Abstract
Esophageal squamous cell carcinoma and esophageal adenocarcinoma are cancers of high mortality. EAC develops through Barrett’s esophagus (BE) and columnar dysplasia, preceded by gastro-esophageal reflux disease. The risk of esophageal squamous cell carcinoma is increased by smoking and alcohol consumption. New treatment options for esophageal cancer are desperately needed. Toll-like receptors (TLRs) play a central role in mammalian immunity and cancer. TLRs are activated by microbial components, such as lipopolysaccharide, flagellin, DNA, and RNA, as well as endogenous ligands, including heat-shock proteins and endogenous DNA. This review summarizes the studies on TLRs in esophageal squamous cell carcinoma and EAC. It has been shown that TLRs 1–10 are expressed in the normal esophagus. In esophageal squamous cell carcinoma, TLRs3, 4, 7, and 9 have been studied, showing associations to aggressive disease properties. In BE and EAC, only TLRs4, 5, and 9 have been studied. In the review, we discuss the implications of TLRs in esophageal cancer.
Collapse
Affiliation(s)
- Joonas H Kauppila
- Department of Pathology, University of Oulu , Oulu , Finland ; Department of Surgery, University of Oulu , Oulu , Finland ; Medical Research Center Oulu , Oulu , Finland ; Oulu University Hospital , Oulu , Finland
| | - Katri S Selander
- Department of Hematology-Oncology, University of Alabama at Birmingham , Birmingham, AL , USA ; Department of Pathology, Lapland Central Hospital , Rovaniemi , Finland
| |
Collapse
|
16
|
Hossain S, Dubielecka PM, Sikorski AF, Birge RB, Kotula L. Crk and ABI1: binary molecular switches that regulate abl tyrosine kinase and signaling to the cytoskeleton. Genes Cancer 2012; 3:402-13. [PMID: 23226578 DOI: 10.1177/1947601912460051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nonreceptor tyrosine kinases Abl and Arg are among the most well-characterized tyrosine kinases in the human genome. The activation of Abl by N-terminal fusions with Bcr (Bcr-Abl) or Gag (v-Abl) is responsible for chronic myeloid leukemia or Ph+ acute lymphoblastic leukemia and mouse leukemia virus, respectively. In addition, aberrant Abl and Arg activation downstream of several oncogenic growth factor receptors contributes to the development and progression of a variety of human cancers, often associated with poor clinical outcome, drug resistance, and tumor invasion and metastasis. Abl activation can occur by a variety of mechanisms that include domain interactions involving structural remodeling of autoinhibited conformations as well as direct phosphorylation by upstream kinases and phosphatases. Constitutive activation of Abl plays a significant role in regulating the actin cytoskeleton by modulating cell adhesion, motility, and invadopodia. This review addresses the role of Abl and Arg in tumor progression with particular emphasis on the roles of Crk and Abi1 adapter proteins as distinct molecular switches for Abl transactivation. These insights, combined with new insights into the structure of these kinases, provide the rationale to envision that Crk and Abi1 fine-tune Abl regulation to control signaling to the cytoskeleton.
Collapse
Affiliation(s)
- Sajjad Hossain
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA ; Current address: Stony Brook University, Stony Brook, NY, USA
| | | | | | | | | |
Collapse
|
17
|
Klymiuk I, Kenner L, Adler T, Busch DH, Boersma A, Irmler M, Gailus-Durner V, Fuchs H, Leitner N, Müller M, Kühn R, Schlederer M, Treise I, de Angelis MH, Beckers J. In vivo functional requirement of the mouse Ifitm1 gene for germ cell development, interferon mediated immune response and somitogenesis. PLoS One 2012; 7:e44609. [PMID: 23115618 PMCID: PMC3480353 DOI: 10.1371/journal.pone.0044609] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/03/2012] [Indexed: 01/19/2023] Open
Abstract
The mammalian Interferon induced transmembrane protein 1 (Ifitm1) gene was originally identified as a member of a gene family highly inducible by type I and type II interferons. Based on expression analyses, it was suggested to be required for normal primordial germ cell migration. The knockdown of Ifitm1 in mouse embryos provided evidence for a role in somitogenesis. We generated the first targeted knockin allele of the Ifitm1 gene to systematically reassess all inferred functions. Sperm motility and the fertility of male and female mutant mice are as in wild type littermates. Embryonic somites and the adult vertebral column appear normal in homozygous Ifitm1 knockout mice, demonstrating that Ifitm1 is not essential for normal segmentation of the paraxial mesoderm. Proportions of leucocyte subsets, including granulocytes, monocytes, B-cells, T-cells, NK-cells, and NKT-cells, are unchanged in mutant mice. Based on a normal immune response to Listeria monocytogenes infection, there is no evidence for a dysfunction in downstream IFNγ signaling in Ifitm1 mutant mice. Expression from the Ifitm1 locus from E8.5 to E14.5 is highly dynamic. In contrast, in adult mice, Ifitm1 expression is highly restricted and strong in the bronchial epithelium. Intriguingly, IFITM1 is highly overexpressed in tumor epithelia cells of human squamous cell carcinomas and in adenocarcinomas of NSCLC patients. These analyses underline the general importance of targeted in vivo studies for the functional annotation of the mammalian genome. The first comprehensive description of the Ifitm1 expression pattern provides a rational basis for the further examination of Ifitm1 gene functions. Based on our data, the fact that IFITM1 can function as a negative regulator of cell proliferation, and because the gene maps to chromosome band 11p15.5, previously associated with NSCLC, it is likely that IFITM1 in man has a key role in tumor formation.
Collapse
Affiliation(s)
- Ingeborg Klymiuk
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München GmbH, Neuherberg, Germany
- * E-mail: (IK); (JB)
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research and Institute for Clinical Pathology, Medical University Vienna, Vienna, Austria
| | - Thure Adler
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München GmbH, Neuherberg, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Auke Boersma
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München GmbH, Neuherberg, Germany
- Institute of Laboratory Animal Science and Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martin Irmler
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| | - Valérie Gailus-Durner
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| | - Nicole Leitner
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ralf Kühn
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| | - Michaela Schlederer
- Ludwig Boltzmann Institute for Cancer Research, Ludwig Boltzmann Gesellschaft, Vienna, Austria
| | - Irina Treise
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München GmbH, Neuherberg, Germany
- Experimental Genetics, Technische Universität München, Freising-Weihenstephan, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München GmbH, Neuherberg, Germany
- Experimental Genetics, Technische Universität München, Freising-Weihenstephan, Germany
- * E-mail: (IK); (JB)
| |
Collapse
|
18
|
Abrogated expression of DEC1 during oesophageal squamous cell carcinoma progression is age- and family history-related and significantly associated with lymph node metastasis. Br J Cancer 2011; 104:841-9. [PMID: 21326238 PMCID: PMC3048215 DOI: 10.1038/bjc.2011.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Oesophageal squamous cell carcinoma (SCC) causes the highest number of cancer deaths in some regions of Northern China. Previously, we narrowed down a critical region at 9q33-34, identified to be associated with tumour-suppressive function of deleted in oesophageal cancer 1 (DEC1) in oesophageal SCC. Methods: We generated DEC1 antibody and constructed tissue microarrays (TMAs) utilising tissue specimens from Henan, a high-risk region for oesophageal SCC, to investigate the importance of DEC1 expression in this cancer. Results: Tissue microarray immunohistochemical staining reveals significant loss of DEC1 from hyperplasia, to tumour, and to lymph node metastasis. In addition, the loss of DEC1 in tumour is age-dependent. Interestingly, there is significant abrogation of DEC1 expression in patients with a family history of oesophageal SCC. Deleted in oesophageal cancer 1 localises to both the cytoplasm and nucleus. The vesicular pattern of DEC1 in the cytoplasm appears to localise at the Golgi and Golgi–endoplasmic reticulum intermediate compartment. Conclusion: This is the first TMA study to suggest a clinical association of DEC1 in lymph node metastatic oesophageal SCC, early onset oesophageal SCC and familial oesophageal SCC development. Subcellular localisation of DEC1 and its expression in oesophageal SCC tissues provide important insight for further deciphering the molecular mechanism of DEC1 in oesophageal SCC development.
Collapse
|
19
|
Yu F, Ng SSM, Chow BKC, Sze J, Lu G, Poon WS, Kung HF, Lin MCM. Knockdown of interferon-induced transmembrane protein 1 (IFITM1) inhibits proliferation, migration, and invasion of glioma cells. J Neurooncol 2010; 103:187-95. [PMID: 20838853 PMCID: PMC3097340 DOI: 10.1007/s11060-010-0377-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/19/2010] [Indexed: 11/26/2022]
Abstract
Interferon-induced transmembrane protein 1 (IFITM1) has recently been identified as a new molecular marker in human colorectal cancer. However, its role in glioma carcinogenesis is not known. In this study, we demonstrated that suppression of IFITM1 expression significantly inhibited proliferation of glioma cells in a time-dependent manner. The growth inhibitory effect was mediated by cell cycle arrest. Furthermore, IFITM1 knockdown significantly inhibited migration and invasion of glioma cells, which could be attributed to decreased expression and enzymatic activity of matrix metalloproteinase 9. Taken together, these results suggest that IFITM1 is a potential therapeutic target for gliomas.
Collapse
Affiliation(s)
- Fang Yu
- Brain Tumour Center, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Samuel S. M. Ng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Johnny Sze
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Gang Lu
- Brain Tumour Center, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wai Sang Poon
- Brain Tumour Center, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hsiang-Fu Kung
- Stanley Ho Center for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Marie C. M. Lin
- Brain Tumour Center, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|