1
|
Han W, Tang H, Wei L, Zhang E. The first DNA barcode library of Chironomidae from the Tibetan Plateau with an evaluation of the status of the public databases. Ecol Evol 2023; 13:e9849. [PMID: 36861023 PMCID: PMC9969238 DOI: 10.1002/ece3.9849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 03/03/2023] Open
Abstract
The main aim of this study was to curate a COI barcode library of Chironomidae from the Tibetan Plateau (TP) as an essential supplement to the public database. Another aim is to evaluate the current status of the public database of Chironomidae in aspects of taxonomic coverage, geographic representation, barcode quality, and efficiency for molecular identification, the Tibetan Plateau, China. In this study, 512 individuals of Chironomidae from the TP were identified based on morphological taxonomy and barcode analysis. The metadata of public records of Chironomidae were downloaded from the BOLD, and the quality of the public barcodes was ranked using the BAGS program. The reliability of the public library for molecular identification was evaluated with the newly curated library using the BLAST method. The newly curated library comprised 159 barcode species of 54 genera, of which 58.4% of species were likely new to science. There were great gaps in the taxonomic coverage and geographic representation in the public database, and only 29.18% of barcodes were identified at the species level. The quality of the public database was of concern, with only 20% of species being determined as concordant between BINs and morphological species. The accuracy of molecular identification using the public database was poor, and about 50% of matched barcodes could be correctly identified at the species level at the identity threshold of 97%. Based on these data, some recommendations are included here for improving barcoding studies on Chironomidae. The species richness of Chironomidae from the TP is much higher than ever recorded. Barcodes from more taxonomic groups and geographic regions are urgently needed to fill the great gap in the current public database of Chironomidae. Users should take caution when public databases are adopted as reference libraries for the taxonomic assignment.
Collapse
Affiliation(s)
- Wu Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of ScienceNanjingChina
- University of Chinese Academy of SciencesBeijing100039China
| | - Hongqu Tang
- Life Science and Technology CollegeJinan UniversityGuangzhouChina
| | - Lili Wei
- Life Science and Technology CollegeJinan UniversityGuangzhouChina
| | - Enlou Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of ScienceNanjingChina
| |
Collapse
|
2
|
Keck F, Blackman RC, Bossart R, Brantschen J, Couton M, Hürlemann S, Kirschner D, Locher N, Zhang H, Altermatt F. Meta-analysis shows both congruence and complementarity of DNA and eDNA metabarcoding to traditional methods for biological community assessment. Mol Ecol 2022; 31:1820-1835. [PMID: 35075700 PMCID: PMC9303474 DOI: 10.1111/mec.16364] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
DNA metabarcoding is increasingly used for the assessment of aquatic communities, and numerous studies have investigated the consistency of this technique with traditional morpho‐taxonomic approaches. These individual studies have used DNA metabarcoding to assess diversity and community structure of aquatic organisms both in marine and freshwater systems globally over the last decade. However, a systematic analysis of the comparability and effectiveness of DNA‐based community assessment across all of these studies has hitherto been lacking. Here, we performed the first meta‐analysis of available studies comparing traditional methods and DNA metabarcoding to measure and assess biological diversity of key aquatic groups, including plankton, microphytobentos, macroinvertebrates, and fish. Across 215 data sets, we found that DNA metabarcoding provides richness estimates that are globally consistent to those obtained using traditional methods, both at local and regional scale. DNA metabarcoding also generates species inventories that are highly congruent with traditional methods for fish. Contrastingly, species inventories of plankton, microphytobenthos and macroinvertebrates obtained by DNA metabarcoding showed pronounced differences to traditional methods, missing some taxa but at the same time detecting otherwise overseen diversity. The method is generally sufficiently advanced to study the composition of fish communities and replace more invasive traditional methods. For smaller organisms, like macroinvertebrates, plankton and microphytobenthos, DNA metabarcoding may continue to give complementary rather than identical estimates compared to traditional approaches. Systematic and comparable data collection will increase the understanding of different aspects of this complementarity, and increase the effectiveness of the method and adequate interpretation of the results.
Collapse
Affiliation(s)
- François Keck
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Rosetta C Blackman
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland.,Research Priority Programme Global Change and Biodiversity (URPP-GCB), University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland
| | - Raphael Bossart
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Jeanine Brantschen
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland.,Research Priority Programme Global Change and Biodiversity (URPP-GCB), University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland
| | - Marjorie Couton
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Samuel Hürlemann
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Dominik Kirschner
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.,Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental System Science, ETH Zürich, Universitätstr. 16, 8092, Zürich, Switzerland.,Landscape Ecology, Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Nadine Locher
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Heng Zhang
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland.,Research Priority Programme Global Change and Biodiversity (URPP-GCB), University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland
| | - Florian Altermatt
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland.,Research Priority Programme Global Change and Biodiversity (URPP-GCB), University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland
| |
Collapse
|
3
|
Martins FMS, Feio MJ, Porto M, Filipe AF, Bonin A, Serra SRQ, Alves PC, Taberlet P, Beja P. Assessing changes in stream macroinvertebrate communities across ecological gradients using morphological versus DNA metabarcoding approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149030. [PMID: 34311381 DOI: 10.1016/j.scitotenv.2021.149030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Freshwater macroinvertebrates provide valuable indicators for biomonitoring ecosystem change in relation to natural and anthropogenic drivers. DNA metabarcoding is an efficient approach for estimating such indicators, but its results may differ from morphotaxonomic approaches traditionally used in biomonitoring. Here we test the hypothesis that despite differences in the number and identity of taxa recorded, both approaches may retrieve comparable patterns of community change, and detect similar ecological gradients influencing such changes. We compared results obtained with morphological identification at family level of macroinvertebrates collected at 80 streams under a Water Framework Directive biomonitoring program in Portugal, with results obtained with metabarcoding from the ethanol preserving the bulk samples, using either single (COI-M19BR2, 16S-Inse01, 18S-Euka02) or multiple markers. Metabarcoding recorded less families and different communities compared to morphotaxonomy, but community sensitivities to disturbance estimated with the IASPT index were more similar across approaches. Spatial variation in local community metrics and the factors influencing such variation were significantly correlated between morphotaxonomy and metabarcoding. After reducing random noise in the dissimilarity matrices, the spatial variation in community composition was also significantly correlated across methods. A dominant gradient of community change was consistently retrieved, and all methods identified a largely similar set of anthropogenic stressors strongly influencing such gradient. Overall, results confirm our initial hypothesis, suggesting that morphotaxonomy and metabarcoding can estimate consistent spatial patterns of community variation and their main drivers. These results are encouraging for macroinvertebrate biomonitoring using metabarcoding approaches, suggesting that they can be intercalibrated with morphotaxonomic approaches to recover equivalent spatial and temporal gradients of ecological change.
Collapse
Affiliation(s)
- Filipa M S Martins
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal; CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vila do Conde, Portugal.
| | - Maria J Feio
- Universidade de Coimbra, MARE, Centro de Ciências do Mar e do Ambiente, Departamento de Ciência da Vida, Coimbra, Portugal
| | - Miguel Porto
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vila do Conde, Portugal; CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Ana F Filipe
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vila do Conde, Portugal; CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Aurélie Bonin
- Université Grenoble Alpes, CNRS, Laboratoire d'Ecologie Alpine (LECA), Grenoble, France
| | - Sónia R Q Serra
- Universidade de Coimbra, MARE, Centro de Ciências do Mar e do Ambiente, Departamento de Ciência da Vida, Coimbra, Portugal
| | - Paulo C Alves
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal; CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vila do Conde, Portugal
| | - Pierre Taberlet
- Université Grenoble Alpes, CNRS, Laboratoire d'Ecologie Alpine (LECA), Grenoble, France; UiT - The Arctic University of Norway, Tromsø Museum, Tromsø, Norway
| | - Pedro Beja
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vila do Conde, Portugal; CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|