1
|
Scott G, Ryder D, Buckley M, Hill R, Treagus S, Stapleton T, Walker DI, Lowther J, Batista FM. Long Amplicon Nanopore Sequencing for Dual-Typing RdRp and VP1 Genes of Norovirus Genogroups I and II in Wastewater. FOOD AND ENVIRONMENTAL VIROLOGY 2024:10.1007/s12560-024-09611-5. [PMID: 39240456 DOI: 10.1007/s12560-024-09611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/15/2024] [Indexed: 09/07/2024]
Abstract
Noroviruses (NoVs) are the leading cause of non-bacterial gastroenteritis with societal costs of US$60.3 billion per annum. Development of a long amplicon nanopore-based method for dual-typing the RNA-dependent RNA polymerase (RdRp) and major structural protein (VP1) regions from a single RNA fragment could improve existing norovirus typing methods. Application to wastewater-based epidemiology (WBE) and environmental testing could enable the discovery of novel types and improve outbreak tracking and source apportionment. Here, we have developed such a method with a consensus-based bioinformatics pipeline and optimised reverse transcription (RT) and PCR procedures. Inhibitor removal and LunaScript® RT gave robust amplification of the ≈ 1000 bp RdRP + VP1 amplicon for both the GI and GII PCR assays. Platinum™ Taq polymerase showed good sensitivity and reduced levels non-specific amplification (NSA) when compared to other polymerases. Optimised PCR annealing temperatures significantly reduced NSA (51.3 and 42.4% for GI and GII), increased yield (86.5% for GII) and increased taxa richness (57.7%) for GII. Analysis of three NoV positive faecal samples showed 100% nucleotide similarity with Sanger sequencing. Eight GI genotypes, 11 polymerase types (p-types) and 13 combinations were detected in wastewater along with 4 GII genotypes, 4 p-types and 8 combinations; highlighting the diversity of norovirus taxa present in wastewater in England. The most common genotypes detected in clinical samples were all detected in wastewater while we also frequently detected several GI genotypes not reported in the clinical data. Application of this method into a WBE scheme, therefore, may allow for more accurate measurement of norovirus diversity within the population.
Collapse
Affiliation(s)
- G Scott
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK.
| | - D Ryder
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - M Buckley
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - R Hill
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - S Treagus
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
- UK Health Security Agency, Salisbury, UK
| | - T Stapleton
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - D I Walker
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - J Lowther
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - F M Batista
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| |
Collapse
|
2
|
Ota Y, Yasunaga K, Mahazu S, Prah I, Nagai S, Hayashi T, Suzuki M, Yoshida M, Hoshino Y, Akeda Y, Suzuki T, Gu Y, Saito R. Comparative evaluation of analytical pipelines for illumina short- and nanopore long-read 16S rRNA gene amplicon sequencing with mock microbial communities. J Microbiol Methods 2024; 221:106929. [PMID: 38599390 DOI: 10.1016/j.mimet.2024.106929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Utility of a recently developed long-read pipeline, Emu, was assessed using an expectation-maximization algorithm for accurate read classification. We compared it to conventional short- and long-read pipelines, using well-characterized mock bacterial samples. Our findings highlight the necessity of appropriate data-processing for taxonomic descriptions, expanding our understanding of the precise microbiome.
Collapse
Affiliation(s)
- Yusuke Ota
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei Yasunaga
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Samiratu Mahazu
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Isaac Prah
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Nagai
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Kanagawa, Japan
| | - Takaya Hayashi
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mitsunori Yoshida
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiaki Gu
- Department of Infectious Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryoichi Saito
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
3
|
Serrana JM, Watanabe K. Haplotype-level metabarcoding of freshwater macroinvertebrate species: A prospective tool for population genetic analysis. PLoS One 2023; 18:e0289056. [PMID: 37486933 PMCID: PMC10365294 DOI: 10.1371/journal.pone.0289056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Metabarcoding is a molecular-based tool capable of large quantity high-throughput species identification from bulk samples that is a faster and more cost-effective alternative to conventional DNA-sequencing approaches. Still, further exploration and assessment of the laboratory and bioinformatics strategies are required to unlock the potential of metabarcoding-based inference of haplotype information. In this study, we assessed the inference of freshwater macroinvertebrate haplotypes from metabarcoding data in a mock sample. We also examined the influence of DNA template concentration and PCR cycle on detecting true and spurious haplotypes. We tested this strategy on a mock sample containing twenty individuals from four species with known haplotypes based on the 658-bp Folmer region of the mitochondrial cytochrome c oxidase gene. We recovered fourteen zero-radius operational taxonomic units (zOTUs) of 421-bp length, with twelve zOTUs having a 100% match with the Sanger haplotype sequences. High-quality reads relatively increased with increasing PCR cycles, and the relative abundance of each zOTU was consistent for each cycle. This suggests that increasing the PCR cycles from 24 to 64 did not affect the relative abundance of each zOTU. As metabarcoding becomes more established and laboratory protocols and bioinformatic pipelines are continuously being developed, our study demonstrated the method's ability to infer intraspecific variability while highlighting the challenges that must be addressed before its eventual application for population genetic studies.
Collapse
Affiliation(s)
- Joeselle M Serrana
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan
- Faculty of Engineering, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
4
|
Namias A, Sahlin K, Makoundou P, Bonnici I, Sicard M, Belkhir K, Weill M. Nanopore sequencing of PCR products enables multicopy gene family reconstruction. Comput Struct Biotechnol J 2023; 21:3656-3664. [PMID: 37533804 PMCID: PMC10393513 DOI: 10.1016/j.csbj.2023.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023] Open
Abstract
The importance of gene amplifications in evolution is more and more recognized. Yet, tools to study multi-copy gene families are still scarce, and many such families are overlooked using common sequencing methods. Haplotype reconstruction is even harder for polymorphic multi-copy gene families. Here, we show that all variants (or haplotypes) of a multi-copy gene family present in a single genome, can be obtained using Oxford Nanopore Technologies sequencing of PCR products, followed by steps of mapping, SNP calling and haplotyping. As a proof of concept, we acquired the sequences of highly similar variants of the cidA and cidB genes present in the genome of the Wolbachia wPip, a bacterium infecting Culex pipiens mosquitoes. Our method relies on a wide database of cid genes, previously acquired by cloning and Sanger sequencing. We addressed problems commonly faced when using mapping approaches for multi-copy gene families with highly similar variants. In addition, we confirmed that PCR amplification causes frequent chimeras which have to be carefully considered when working on families of recombinant genes. We tested the robustness of the method using a combination of bioinformatics (read simulations) and molecular biology approaches (sequence acquisitions through cloning and Sanger sequencing, specific PCRs and digital droplet PCR). When different haplotypes present within a single genome cannot be reconstructed from short reads sequencing, this pipeline confers a high throughput acquisition, gives reliable results as well as insights of the relative copy numbers of the different variants.
Collapse
Affiliation(s)
- Alice Namias
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Kristoffer Sahlin
- Department of Mathematics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Patrick Makoundou
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Iago Bonnici
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Mathieu Sicard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Khalid Belkhir
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Mylène Weill
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
5
|
Watanabe T, Hirai J, Sildever S, Tadokoro K, Hidaka K, Tanita I, Nishiuchi K, Iguchi N, Kasai H, Nishi N, Katakura S, Taniuchi Y, Kodama T, Tashiro S, Nakae M, Okazaki Y, Kitajima S, Sogawa S, Hasegawa T, Azumaya T, Hiroe Y, Ambe D, Setou T, Ito D, Kusaka A, Okunishi T, Tanaka T, Kuwata A, Hasegawa D, Kakehi S, Shimizu Y, Nagai S. Improving taxonomic classification of marine zooplankton by molecular approach: registration of taxonomically verified 18S and 28S rRNA gene sequences. PeerJ 2023; 11:e15427. [PMID: 37334134 PMCID: PMC10276563 DOI: 10.7717/peerj.15427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/25/2023] [Indexed: 06/20/2023] Open
Abstract
Background Zooplankton plays an important role in the marine ecosystem. A high level of taxonomic expertise is necessary for accurate species identification based on morphological characteristics. As an alternative method to morphological classification, we focused on a molecular approach using 18S and 28S ribosomal RNA (rRNA) gene sequences. This study investigates how the accuracy of species identification by metabarcoding improves when taxonomically verified sequences of dominant zooplankton species are added to the public database. The improvement was tested by using natural zooplankton samples. Methods rRNA gene sequences were obtained from dominant zooplankton species from six sea areas around Japan and registered in the public database for improving the accuracy of taxonomic classifications. Two reference databases with and without newly registered sequences were created. Comparison of detected OTUs associated with single species between the two references was done using field-collected zooplankton samples from the Sea of Okhotsk for metabarcoding analysis to verify whether or not the newly registered sequences improved the accuracy of taxonomic classifications. Results A total of 166 sequences in 96 species based on the 18S marker and 165 sequences in 95 species based on the 28S marker belonging to Arthropoda (mostly Copepoda) and Chaetognatha were registered in the public database. The newly registered sequences were mainly composed of small non-calanoid copepods, such as species belonging to Oithona and Oncaea. Based on the metabarcoding analysis of field samples, a total of 18 out of 92 OTUs were identified at the species level based on newly registered sequences in the data obtained by the 18S marker. Based on the 28S marker, 42 out of 89 OTUs were classified at the species level based on taxonomically verified sequences. Thanks to the newly registered sequences, the number of OTUs associated with a single species based on the 18S marker increased by 16% in total and by 10% per sample. Based on the 28S marker, the number of OTUs associated with a single species increased by 39% in total and by 15% per sample. The improved accuracy of species identification was confirmed by comparing different sequences obtained from the same species. The newly registered sequences had higher similarity values (mean >0.003) than the pre-existing sequences based on both rRNA genes. These OTUs were identified at the species level based on sequences not only present in the Sea of Okhotsk but also in other areas. Discussion The results of the registration of new taxonomically verified sequences and the subsequent comparison of databases based on metabarcoding data of natural zooplankton samples clearly showed an increase in accuracy in species identification. Continuous registration of sequence data covering various environmental conditions is necessary for further improvement of metabarcoding analysis of zooplankton for monitoring marine ecosystems.
Collapse
Affiliation(s)
- Tsuyoshi Watanabe
- Kushiro Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Kushiro, Japan
| | - Junya Hirai
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Sirje Sildever
- Yokohama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Shiogama, Japan
- Department of Marine Systems, Tallinn University of Technology, Tallinn, Estonia
| | - Kazuaki Tadokoro
- Shiogama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Shiogama, Japan
| | - Kiyotaka Hidaka
- Yokohama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Shiogama, Japan
| | - Iwao Tanita
- Yaeyama Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Japan
| | - Koh Nishiuchi
- Nagasaki Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Nagasaki, Japan
| | - Naoki Iguchi
- Niigata Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Niigata, Japan
| | - Hiromi Kasai
- Kushiro Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Kushiro, Japan
| | | | | | - Yukiko Taniuchi
- Kushiro Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Kushiro, Japan
| | - Taketoshi Kodama
- Yokohama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Shiogama, Japan
- Present Address: Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Satokuni Tashiro
- Yaeyama Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Japan
| | - Misato Nakae
- Niigata Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Niigata, Japan
| | - Yuji Okazaki
- Shiogama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Shiogama, Japan
| | - Satoshi Kitajima
- Nagasaki Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Nagasaki, Japan
| | - Sayaka Sogawa
- Yokohama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Shiogama, Japan
| | - Toru Hasegawa
- Nagasaki Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Nagasaki, Japan
| | - Tomonori Azumaya
- Kushiro Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Kushiro, Japan
| | - Yutaka Hiroe
- Nagasaki Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Nagasaki, Japan
| | - Daisuke Ambe
- Yokohama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Shiogama, Japan
| | - Takashi Setou
- Yokohama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Shiogama, Japan
| | - Daiki Ito
- Yokohama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Shiogama, Japan
| | - Akira Kusaka
- Yokohama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Shiogama, Japan
| | - Takeshi Okunishi
- Shiogama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Shiogama, Japan
| | - Takahiro Tanaka
- Shiogama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Shiogama, Japan
| | - Akira Kuwata
- Shiogama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Shiogama, Japan
| | - Daisuke Hasegawa
- Shiogama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Shiogama, Japan
| | - Shigeho Kakehi
- Shiogama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Shiogama, Japan
| | - Yugo Shimizu
- Shiogama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Shiogama, Japan
| | - Satoshi Nagai
- Yokohama Field Station, Fisheries Technology Institute, Fisheries Research and Education Agency, Yokohama, Japan
| |
Collapse
|
6
|
Ahmad S, Ali SF, Iftikhar S, Rashid N. Engineering a DNA polymerase from Pyrobaculum calidifontis for improved activity, processivity and extension rate. Int J Biol Macromol 2023; 233:123545. [PMID: 36740112 DOI: 10.1016/j.ijbiomac.2023.123545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Positively charged amino acids in the DNA polymerase domain are important for interaction with DNA. Two potential residues in the palm domain of Pca-Pol, a DNA polymerase from Pyrobaculum calidifontis, were identified and mutated to arginine in order to improve the properties of this enzyme. The mutant proteins were heterologously produced in Escherichia coli. Biochemical characterization revealed that there was no significant difference in pH, metal ion, buffer preferences, 3' - 5' exonuclease activity and error rate of the wild-type and the mutant enzymes. However, the specific activity, processivity and extension rate of the mutant enzymes increased significantly. Specific activity of one of the mutants (G522R-E555R) was nearly 9-fold higher than that of the wild-type enzyme. These properties make G522R-E555R mutant enzyme a potential candidate for commercial applications.
Collapse
Affiliation(s)
- Shazeel Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Syed Farhat Ali
- KAM-School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore 54600, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
7
|
Minamoto T. Environmental DNA analysis for macro-organisms: species distribution and more. DNA Res 2022; 29:6598799. [PMID: 35652724 PMCID: PMC9187915 DOI: 10.1093/dnares/dsac018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/31/2022] [Indexed: 11/14/2022] Open
Abstract
In an era of severe biodiversity loss, biological monitoring is becoming increasingly essential. The analysis of environmental DNA (eDNA) has emerged as a new approach that could revolutionize the biological monitoring of aquatic ecosystems. Over the past decade, macro-organismal eDNA analysis has undergone significant developments and is rapidly becoming established as the golden standard for non-destructive and non-invasive biological monitoring. In this review, I summarize the development of macro-organismal eDNA analysis to date and the techniques used in this field. I also discuss the future perspective of these analytical methods in combination with sophisticated analytical techniques for DNA research developed in the fields of molecular biology and molecular genetics, including genomics, epigenomics, and single-cell technologies. eDNA analysis, which to date has been used primarily for determining the distribution of organisms, is expected to develop into a tool for elucidating the physiological state and behaviour of organisms. The fusion of microbiology and macrobiology through an amalgamation of these technologies is anticipated to lead to the future development of an integrated biology.
Collapse
Affiliation(s)
- Toshifumi Minamoto
- Graduate School of Human Development and Environment, Kobe University , Kobe, Hyogo 657-8501, Japan
| |
Collapse
|