1
|
Svantesson S, Kõljalg U, Wurzbacher C, Saar I, Larsson KH, Larsson E. Polyozellus vs. Pseudotomentella: generic delimitation with a multi-gene dataset. Fungal Syst Evol 2022; 8:143-154. [PMID: 35005578 PMCID: PMC8687065 DOI: 10.3114/fuse.2021.08.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/26/2021] [Indexed: 11/07/2022] Open
Abstract
Polyozellus and Pseudotomentella are two genera of closely related, ectomycorrhizal fungi in the order Thelephorales; the former stipitate and the latter corticioid. Both are widespread in the Northern Hemisphere and many species from both genera seem to be restricted to old growth forest. This study aimed to: a) identify genetic regions useful in inferring the phylogenetic relationship between Polyozellus and Pseudotomentella, b) infer this relationship with the regions identified and c) make any taxonomic changes warranted by the result. RPB2, mtSSU and nearly full-length portions of nrLSU and nrSSU were found to be comparatively easy to sequence and provide a strong phylogenetic signal. A STACEY species tree of these three regions revealed that Polyozellus makes Pseudotomentella paraphyletic. As a result, nearly all species currently placed in Pseudotomentella were recombined to Polyozellus. Pseudotomentella larsenii was found to be closer to Tomentellopsis than Polyozellus, but its placement needs further study and it was hence not recombined.
Collapse
Affiliation(s)
- S Svantesson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30 Göteborg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, 405 30 Göteborg, Sweden.,Royal Botanic Gardens Victoria, Birdwood Ave, Melbourne, Victoria 3004, Australia
| | - U Kõljalg
- Natural History Museum, University of Tartu, 14a Ravila, 50411 Tartu, Estonia.,Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, 50411 Tartu, Estonia
| | - C Wurzbacher
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30 Göteborg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, 405 30 Göteborg, Sweden.,Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - I Saar
- Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, 50411 Tartu, Estonia
| | - K-H Larsson
- Gothenburg Global Biodiversity Centre, Box 461, 405 30 Göteborg, Sweden.,Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, 0318 Oslo, Norway
| | - E Larsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30 Göteborg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, 405 30 Göteborg, Sweden
| |
Collapse
|
2
|
Cao B, Haelewaters D, Schoutteten N, Begerow D, Boekhout T, Giachini AJ, Gorjón SP, Gunde-Cimerman N, Hyde KD, Kemler M, Li GJ, Liu DM, Liu XZ, Nuytinck J, Papp V, Savchenko A, Savchenko K, Tedersoo L, Theelen B, Thines M, Tomšovský M, Toome-Heller M, Urón JP, Verbeken A, Vizzini A, Yurkov AM, Zamora JC, Zhao RL. Delimiting species in Basidiomycota: a review. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00479-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Fungal species boundaries in the genomics era. Fungal Genet Biol 2019; 131:103249. [PMID: 31279976 DOI: 10.1016/j.fgb.2019.103249] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/21/2019] [Accepted: 06/28/2019] [Indexed: 12/30/2022]
Abstract
Genomic data has opened new possibilities to understand how organisms change over time, and could enable the discovery of previously undescribed species. Although taxonomy used to be based on phenotypes, molecular data has frequently revealed that morphological traits are insufficient to describe biodiversity. Genomics holds the promise of revealing even more genetic discontinuities, but the parameters on how to describe species from genomic data remain unclear. Fungi have been a successful case in which the use of molecular markers has uncovered the existence of genetic boundaries where no crosses are possible. In this minireview, we highlight recent advances, propose a set of standards to use genomic sequences to uncover species boundaries, point out potential pitfalls, and present possible future research directions.
Collapse
|