1
|
Zhu Y, Ma L, Xue H, Li Y, Jiang N. New species of Diaporthe (Diaporthaceae, Diaporthales) from Bauhiniavariegata in China. MycoKeys 2024; 108:317-335. [PMID: 39310741 PMCID: PMC11415621 DOI: 10.3897/mycokeys.108.128983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/07/2024] [Indexed: 09/25/2024] Open
Abstract
Diaporthe species are known as endophytes, saprobes and pathogens infecting a wide range of plants and resulting in important crop diseases. In the present study, four strains of Diaporthe were obtained from diseased leaves of Bauhiniavariegata in Guangdong Province, China. Phylogenetic analyses were conducted to identify these strains using five gene regions: internal transcribed spacer (ITS), calmodulin (cal), histone H3 (his3), translation elongation factor 1-α (tef1) and β-tubulin (tub2). The results combined with morphology revealed two new species of Diaporthe named D.bauhiniicola in D.arecae species complex and D.guangzhouensis in D.sojae species complex.
Collapse
Affiliation(s)
- Yaquan Zhu
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Lei Ma
- Forest Pest Control and Quarantine Station of Tonghua County, Tonghua 134001, ChinaForest Pest Control and Quarantine Station of Tonghua CountyTonghuaChina
| | - Han Xue
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Yong Li
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Ning Jiang
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| |
Collapse
|
2
|
Lambert C, Schweizer L, Matio Kemkuignou B, Anoumedem EGM, Kouam SF, Marin-Felix Y. Four new endophytic species of Diaporthe (Diaporthaceae, Diaporthales) isolated from Cameroon. MycoKeys 2023; 99:319-362. [PMID: 37915461 PMCID: PMC10616871 DOI: 10.3897/mycokeys.99.110043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
The genus Diaporthe (Diaporthaceae, Diaporthales) is a large group of fungi frequently reported as phytopathogens, with ubiquitous distribution across the globe. Diaporthe have traditionally been characterized by the morphology of their ana- and teleomorphic state, revealing a high degree of heterogeneity as soon as DNA sequencing was utilized across the different members of the group. Their relevance for biotechnology and agriculture attracts the attention of taxonomists and natural product chemists alike in context of plant protection and exploitation for their potential to produce bioactive secondary metabolites. While more than 1000 species are described to date, Africa, as a natural habitat, has so far been under-sampled. Several endophytic fungi belonging to Diaporthe were isolated from different plant hosts in Cameroon over the course of this study. Phylogenetic analyses based on DNA sequence data of the internal transcribed spacer region and intervening 5.8S nrRNA gene, and partial fragments of the calmodulin, beta-tubulin, histone and the translation elongation factor 1-α genes, demonstrated that these isolates represent four new species, i.e. D.brideliae, D.cameroonensis, D.pseudoanacardii and D.rauvolfiae. Moreover, the description of D.isoberliniae is here emended, now incorporating the morphology of beta and gamma conidia produced by two of our endophytic isolates, which had never been documented in previous records. Moreover, the paraphyletic nature of the genus is discussed and suggestions are made for future revision of the genus.
Collapse
Affiliation(s)
- Christopher Lambert
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, GermanyMolecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Lena Schweizer
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
| | - Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Elodie Gisèle M. Anoumedem
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé P.O. Box 47, CameroonUniversity of Yaoundé IYaoundeCameroon
| | - Simeon F. Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé P.O. Box 47, CameroonUniversity of Yaoundé IYaoundeCameroon
| | - Yasmina Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
3
|
Xiao X, Liu Y, Zheng F, Xiong T, Zeng Y, Wang W, Zheng X, Wu Q, Xu J, Crous P, Jiao C, Li H. High species diversity in Diaporthe associated with citrus diseases in China. PERSOONIA 2023; 51:229-256. [PMID: 38665984 PMCID: PMC11041894 DOI: 10.3767/persoonia.2023.51.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/08/2023] [Indexed: 04/28/2024]
Abstract
Species in Diaporthe have broad host ranges and cosmopolitan geographic distributions, occurring as endophytes, saprobes and plant pathogens. Previous studies have indicated that many Diaporthe species are associated with Citrus. To further determine the diversity of Diaporthe species associated with citrus diseases in China, we conducted extensive surveys in major citrus-producing areas from 2017-2020. Diseased tissues were collected from leaves, fruits, twigs, branches and trunks showing a range of symptoms including melanose, dieback, gummosis, wood decay and canker. Based on phylogenetic comparisons of DNA sequences of the internal transcribed spacer regions (ITS), calmodulin (cal), histone H3 (his3), translation elongation factor 1-alpha (tef1) and beta-tubulin (tub2), 393 isolates from 10 provinces were identified as belonging to 36 species of Diaporthe, including 32 known species, namely D. apiculata, D. biconispora, D. biguttulata, D. caryae, D. citri, D. citriasiana, D. compacta, D. discoidispora, D. endophytica, D. eres, D. fusicola, D. fulvicolor, D. guangxiensis, D. hongkongensis, D. hubeiensis, D. limonicola, D. litchii, D. novem, D. passifloricola, D. penetriteum, D. pescicola, D. pometiae, D. sackstonii, D. sennicola, D. sojae, D. spinosa, D. subclavata, D. tectonae, D. tibetensis, D. unshiuensis, D. velutina and D. xishuangbanica, and four new species, namely D. gammata, D. jishouensis, D. ruiliensis and D. sexualispora. Among the 32 known species, 14 are reported for the first time on Citrus, and two are newly reported from China. Among the 36 species, D. citri was the dominant species as exemplified by its high frequency of isolation and virulence. Pathogenicity tests indicated that most Diaporthe species obtained in this study were weakly aggressive or non-pathogenic to the tested citrus varieties. Only D. citri produced the longest lesion lengths on citrus shoots and induced melanose on citrus leaves. These results further demonstrated that a rich diversity of Diaporthe species occupy Citrus, but only a few species are harmful and D. citri is the main pathogen for Citrus in China. The present study provides a basis from which targeted monitoring, prevention and control measures can be developed. Citation: Xiao XE, Liu YD, Zheng F, et al. 2023. High species diversity in Diaporthe associated with citrus diseases in China. Persoonia 51: 229-256. doi: 10.3767/persoonia.2023.51.06.
Collapse
Affiliation(s)
- X.E. Xiao
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Y.D. Liu
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - F. Zheng
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - T. Xiong
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Y.T. Zeng
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - W. Wang
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - X.L. Zheng
- Quzhou Academy of Agricultural and Forestry Sciences, Quzhou, 324000, China
| | - Q. Wu
- Quzhou Academy of Agricultural and Forestry Sciences, Quzhou, 324000, China
| | - J.P. Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - C. Jiao
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - H.Y. Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
4
|
Wan Y, Li DW, Si YZ, Li M, Huang L, Zhu LH. Three New Species of Diaporthe Causing Leaf Blight on Acer palmatum in China. PLANT DISEASE 2023; 107:849-860. [PMID: 35961016 DOI: 10.1094/pdis-06-22-1475-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diaporthe spp. are often reported as plant pathogens, endophytes, and saprobes. In this study, three new species (Diaporthe foliicola, D. monospora, and D. nanjingensis) on Acer palmatum were described and illustrated based on morphological characteristics and phylogenetic analyses. Phylogenetic relationships of the new species were determined by multilocus phylogenetic analyses based on partial sequences of the internal transcribed spacer (ITS) region, translation elongation factor 1-α (TEF), β-tubulin (TUB), histone H3 (HIS), and calmodulin (CAL) genes. Genealogical concordance phylogenetic species recognition with a pairwise homoplasy index test was used to verify the conclusions of the phylogenetic analyses. All species were illustrated and their morphology and phylogenetic relationships with other related Diaporthe spp. are discussed. In addition, the tests of Koch's postulates showed that the three new species were pathogens causing leaf blight on A. palmatum.
Collapse
Affiliation(s)
- Yu Wan
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - De-Wei Li
- The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095, U.S.A
| | - Yuan-Zhi Si
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Min Li
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lin Huang
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Li-Hua Zhu
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
5
|
Zhu YQ, Ma CY, Xue H, Piao CG, Li Y, Jiang N. Two new species of Diaporthe (Diaporthaceae, Diaporthales) in China. MycoKeys 2023; 95:209-228. [DOI: 10.3897/mycokeys.95.98969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Species of Diaporthe have been reported as plant endophytes, pathogens and saprobes on a wide range of plant hosts. Strains of Diaporthe were isolated from leaf spots of Smilax glabra and dead culms of Xanthium strumarium in China, and identified based on morphology and molecular phylogenetic analyses of combined internal transcribed spacer region (ITS), calmodulin (cal), histone H3 (his3), translation elongation factor 1-alpha (tef1) and β-tubulin (tub2) loci. As a result, two new species named Diaporthe rizhaoensis and D. smilacicola are identified, described and illustrated in the present study.
Collapse
|
6
|
Abramczyk B, Pecio Ł, Kozachok S, Kowalczyk M, Marzec-Grządziel A, Król E, Gałązka A, Oleszek W. Pioneering Metabolomic Studies on Diaporthe eres Species Complex from Fruit Trees in the South-Eastern Poland. Molecules 2023; 28:molecules28031175. [PMID: 36770841 PMCID: PMC9920373 DOI: 10.3390/molecules28031175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Fungi from the genus Diaporthe have been reported as plant pathogens, endophytes, and saprophytes on a wide range of host plants worldwide. Their precise identification is problematic since many Diaporthe species can colonize a single host plant, whereas the same Diaporthe species can inhabit many hosts. Recently, Diaporthe has been proven to be a rich source of bioactive secondary metabolites. In our initial study, 40 Diaporthe isolates were analyzed for their metabolite production. A total of 153 compounds were identified based on their spectroscopic properties-Ultraviolet-visible and mass spectrometry. From these, 43 fungal metabolites were recognized as potential chemotaxonomic markers, mostly belonging to the drimane sesquiterpenoid-phthalide hybrid class. This group included mainly phytotoxic compounds such as cyclopaldic acid, altiloxin A, B, and their derivatives. To the best of our knowledge, this is the first report on the metabolomic studies on Diaporthe eres species complex from fruit trees in the South-Eastern Poland. The results from our study may provide the basis for the future research on the isolation of identified metabolites and on their bioactive potential for agricultural applications as biopesticides or biofertilizers.
Collapse
Affiliation(s)
- Barbara Abramczyk
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
- Correspondence:
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| | - Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Anna Marzec-Grządziel
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Ewa Król
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland
| | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| |
Collapse
|
7
|
Kemkuignou BM, Lambert C, Schmidt K, Schweizer L, Anoumedem EGM, Kouam SF, Stadler M, Stradal T, Marin-Felix Y. Unreported cytochalasins from an acid-mediated transformation of cytochalasin J isolated from Diaporthe cf. ueckeri. Fitoterapia 2023; 166:105434. [PMID: 36681097 DOI: 10.1016/j.fitote.2023.105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Chemical investigation of an endophytic fungus herein identified as Diaporthe cf. ueckeri yielded four known compounds, named cytochalasins H and J and dicerandrols A and B. Reports of acid sensitivity within the cytochalasan family inspired an attempt of acid-mediated conversion of cytochalasins H and J, resulting in the acquisition of five polycyclic cytochalasins featuring 5/6/5/8-fused tetracyclic and 5/6/6/7/5-fused pentacyclic skeletons. Two of the obtained polycyclic cytochalasins constituted unprecedented analogues, for which the trivial names cytochalasins J4 and J5 were proposed, whereas the others were identified as the known phomopchalasin A, phomopchalasin D and 21-acetoxycytochalasin J3. The structures of the compounds were determined by extensive spectral analysis, namely HR-ESIMS, ESIMS and 1D/2D NMR. The stereochemistry of cytochalasins J4 and J5 was proposed using their ROESY data, biosynthetic and mechanistic considerations and by comparison of their ECD spectra with those of related congeners. All compounds except for cytochalasins H and J were tested for antimicrobial and cytotoxic activity. Cytochalasins J4 and J5 showed neither antimicrobial nor cytotoxic activity in the tested concentrations, with only weak antiproliferative activity observable against KB3.1 cells. The actin disruptive properties of all cytochalasins obtained in this study and of the previously reported cytochalasins RKS-1778 and phomopchalasin N were examined, and monitored by fluorescence microscopy using human osteo-sarcoma (U2-OS) cells. Compared to their precursor molecules (cytochalasins H and J), phomopchalasins A and D, 21-acetoxycytochalasin J3, cytochalasins J4 and J5 revealed a strongly reduced activity on the F-actin network, highlighting that the macrocyclic ring is crucial for bioactivity.
Collapse
Affiliation(s)
- Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Christopher Lambert
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Katharina Schmidt
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Lena Schweizer
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Elodie Gisèle M Anoumedem
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé, P.O. Box 47, Cameroon
| | - Simeon F Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé, P.O. Box 47, Cameroon
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Theresia Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Yasmina Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany.
| |
Collapse
|
8
|
Yang EF, Karunarathna SC, Dai DQ, Stephenson SL, Elgorban AM, Al-Rejaie S, Xiong YR, Promputtha I, Samarakoon MC, Tibpromma S. Taxonomy and Phylogeny of Fungi Associated with Mangifera indica from Yunnan, China. J Fungi (Basel) 2022; 8:1249. [PMID: 36547582 PMCID: PMC9780836 DOI: 10.3390/jof8121249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
During investigations of saprobic fungi associated with mango (Mangifera indica) in Baoshan and Honghe of Yunnan Province (China), fungal taxa belonging to the orders Botryosphaeriales, Calosphaeriales, Chaetothyriales, Diaporthales, and Xylariales were recorded. Morphological examinations coupled with phylogenetic analyses of multigene sequences (ITS, LSU, SSU, tef1-α, rpb1, rpb2, β-tubulin and CAL) were used to identify the fungal taxa. A new genus viz. Mangifericola, four new species viz. Cyphellophora hongheensis, Diaporthe hongheensis, Hypoxylon hongheensis, and Mangifericola hongheensis, four new host and geographical records viz. Aplosporella artocarpi, Hypomontagnella monticulosa, Paraeutypella citricola and Pleurostoma ootheca, and two new collections of Lasiodiplodia are reported.
Collapse
Affiliation(s)
- Er-Fu Yang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Steven L. Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 12211, Saudi Arabia
| | - Salim Al-Rejaie
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 12211, Saudi Arabia
| | - Yin-Ru Xiong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
9
|
Zhang SQ, Wang JP, Zhang FM, Yao LL, Li BX, Li YN, Gan D, Mei RF, Cai L, Ding ZT. Investigations of specialised metabolites of endophyte Diaporthe destruens hosted in Illigera orbiculata C. Y. Wu. PHYTOCHEMISTRY 2022; 203:113357. [PMID: 35970436 DOI: 10.1016/j.phytochem.2022.113357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
A chemical investigation of the endophytic fungus Diaporthe destruens from the Hernandiaceae plant Illigera orbiculata C. Y. Wu collected from southern Yunnan Province, China, led to the isolation of six undescribed compounds, including two azaphilone analogs, which are a pair of epimers (13R-hydroxy-chermesinone A and 13S-hydroxy-chermesinone A); a pyrrole derivative (1-(4-(methoxymethyl)-1H-pyrrol-3-yl)ethan-1-one); an isoindolone derivative (4-hydroxy-6-methoxyisoindolin-1-one); a benzylbenzene derivative (destruensine A) and a conjectural fragment of polyketide ((2R,4R)-2-(methoxymethyl)pentane-1,4-diol) along with nine known compounds. Their structures were elucidated by spectroscopic methods and HRESIMS, and the absolute configurations were further confirmed by electronic circular dichroism (ECD) and chemical derivatization. The antimicrobial activities, anti-acetylcholinesterase activities, antiproliferation, and NO production inhibitory effects of compounds 1-15 were evaluated.
Collapse
Affiliation(s)
- Sheng-Qi Zhang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jia-Peng Wang
- College of Pharmacy, Dali University, Dali, 671003, People's Republic of China
| | - Feng-Mei Zhang
- R&D Center of China Tobacco Yunnan Industry Co., Ltd., Kunming, 650231, People's Republic of China
| | - Lin-Lin Yao
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Bing-Xian Li
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ya-Ni Li
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Dong Gan
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Rui-Feng Mei
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Le Cai
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China; College of Pharmacy, Dali University, Dali, 671003, People's Republic of China.
| |
Collapse
|
10
|
Endophytic Diaporthe Associated with Morinda officinalis in China. J Fungi (Basel) 2022; 8:jof8080806. [PMID: 36012794 PMCID: PMC9410054 DOI: 10.3390/jof8080806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Diaporthe species are endophytes, pathogens, and saprobes with a wide host range worldwide. However, little is known about endophytic Diaporthe species associated with Morinda officinalis. In the present study, 48 endophytic Diaporthe isolates were obtained from cultivated M. officinalis in Deqing, Guangdong Province, China. The nuclear ribosomal internal transcribed spacer (ITS), partial sequences of translation elongation factor 1-α (tef1-α), partial calmodulin (cal), histone H3 (his), and Beta-tubulin (β-tubulin) gene regions were sequenced and employed to construct phylogenetic trees. Based on morphology and combined multigene phylogeny, 12 Diaporthe species were identified, including five new species of Diaporthe longiconidialis, D. megabiguttulata, D. morindendophytica, D. morindae, and D. zhaoqingensis. This is the first report of Diaporthe chongqingensis, D. guangxiensis, D. heliconiae, D. siamensis, D. unshiuensis, and D. xishuangbanica on M. officinalis. This study provides the first intensive study of endophytic Diaporthe species on M. officinalis in China. These results will improve the current knowledge of Diaporthe species associated with this traditional medicinal plant. Furthermore, results from this study will help to understand the potential pathogens and biocontrol agents from M. officinalis and to develop a disease management platform.
Collapse
|
11
|
Cao L, Luo D, Lin W, Yang Q, Deng X. Four new species of Diaporthe (Diaporthaceae, Diaporthales) from forest plants in China. MycoKeys 2022; 91:25-47. [PMID: 36760894 PMCID: PMC9849071 DOI: 10.3897/mycokeys.91.84970] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/13/2022] [Indexed: 11/12/2022] Open
Abstract
Species of Diaporthe inhabit a wide range of plant hosts as plant pathogens, endophytes and saprobes. During trips to collect forest pathogens in Beijing, Jiangxi, Shaanxi and Zhejiang Provinces in China, 16 isolates of Diaporthe were obtained from branch cankers and leaf spots. These isolates were studied by applying a polyphasic approach including morphological, cultural data, and phylogenetic analyses of the nuclear ribosomal internal transcribed spacer (ITS), calmodulin (cal), histone H3 (his3), partial translation elongation factor-1α (tef-1α) and β-tubulin (tub2) loci. Results revealed four new taxa, D.celticola, D.meliae, D.quercicola, D.rhodomyrti spp. nov. and two known species, D.eres and D.multiguttulata.
Collapse
Affiliation(s)
- Lingxue Cao
- Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Dun Luo
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wu Lin
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qin Yang
- Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaojun Deng
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
12
|
Matio Kemkuignou B, Schweizer L, Lambert C, Anoumedem EGM, Kouam SF, Stadler M, Marin-Felix Y. New polyketides from the liquid culture of Diaporthebreyniae sp. nov. (Diaporthales, Diaporthaceae). MycoKeys 2022; 90:85-118. [PMID: 36760420 PMCID: PMC9849082 DOI: 10.3897/mycokeys.90.82871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/02/2022] [Indexed: 11/12/2022] Open
Abstract
During the course of a study on the biodiversity of endophytes from Cameroon, a fungal strain was isolated. A multigene phylogenetic inference using five DNA loci revealed that this strain represents an undescribed species of Diaporthe, which is introduced here as D.breyniae. Investigation into the chemistry of this fungus led to the isolation of two previously undescribed secondary metabolites for which the trivial names fusaristatins G (7) and H (8) are proposed, together with eleven known compounds. The structures of all of the metabolites were established by using one-dimensional (1D) and two-dimensional (2D) Nuclear Magnetic Resonance (NMR) spectroscopic data in combination with High-Resolution ElectroSpray Ionization Mass Spectrometry (HR-ESIMS) data. The absolute configuration of phomopchalasin N (4), which was reported for the first time concurrently to the present publication, was determined by analysis of its Rotating frame Overhauser Effect SpectroscopY (ROESY) spectrum and by comparison of its Electronic Circular Dichroism (ECD) spectrum with that of related compounds. A selection of the isolated secondary metabolites were tested for antimicrobial and cytotoxic activities, and compounds 4 and 7 showed weak antifungal and antibacterial activity. On the other hand, compound 4 showed moderate cytotoxic activity against all tested cancer cell lines with IC50 values in the range of 5.8-45.9 µM. The latter was found to be less toxic than the other isolated cytochalasins (1-3) and gave hints in regards to the structure-activity relationship (SAR) of the studied cytochalasins. Fusaristatin H (8) also exhibited weak cytotoxicity against KB3.1 cell lines with an IC50 value of 30.3 µM. Graphical abstract.
Collapse
Affiliation(s)
- Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF)BraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Lena Schweizer
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF)BraunschweigGermany
| | - Christopher Lambert
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF)BraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Elodie Gisèle M. Anoumedem
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé P.O. Box 47, CameroonUniversity of Yaoundé IYaoundeCameroon
| | - Simeon F. Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé P.O. Box 47, CameroonUniversity of Yaoundé IYaoundeCameroon
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF)BraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Yasmina Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF)BraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
13
|
Investigations on Fungi Isolated from Apple Trees with Die-Back Symptoms from Basilicata Region (Southern Italy). PLANTS 2022; 11:plants11101374. [PMID: 35631798 PMCID: PMC9147037 DOI: 10.3390/plants11101374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
Val d’Agri is an important orchard area located in the Basilicata Region (Southern Italy). A phenomenon affecting cv. “Golden Delicious” apples which lead to tree death has been observed in the past several years in this area. This phenomenon has already been detected in about 20 hectares and is rapidly expanding. The symptoms observed were “scaly bark” and extensive cankers, mainly located in the lower part of the trunk, associated with wood decay. Dead plants ranged from 20% to 80% and, in many cases, trees were removed by farmers. In order to identify the causes of this phenomenon, investigations were started in autumn/winter 2019. In order to determine the possible causal agents, fungal and bacterial isolations, from symptomatic tissues, were performed in laboratory. Bacterial isolations gave negative results, whereas pure fungal cultures (PFCs) were obtained after 3–4 passages on potato dextrose agar (PDA) media. Genetic material was extracted from each PFC and amplified by PCR using three pairs of primers: ITS5/4, Bt2a/Bt2b and ACT-512F/ACT-783R. The amplicons were directly sequenced, and nucleotide sequences were compared with those already present in the NCBI GenBank nucleotide database. All isolated fungi were identified based on morphological features and multilocus molecular analyses. Neofusicoccum parvum, Diaporthe eres and Trametes versicolor were most frequently isolated, while Pestalotiopsis funerea, Phomopsis spp. and Diaporthe foeniculina were less frequently isolated. All nucleotide sequences obtained in this study have been deposited into the EMBL database. Pathogenicity tests showed that N. parvum was the most pathogenic and aggressive fungus, while Phomopsis sp. was demonstrated to be the less virulent one. All the investigated fungi were repeatedly reisolated from artificially inoculated twigs of 2-year-old apple trees, cv. “Golden Delicious”, and subsequently morphologically and molecularly identified. The role played by the above-mentioned fungi in the alterations observed in field is also discussed.
Collapse
|
14
|
Gomzhina MM, Gannibal PB. Diaporthe species infecting sunflower ( Helianthus annuus) in Russia, with the description of two new species. Mycologia 2022; 114:556-574. [PMID: 35583980 DOI: 10.1080/00275514.2022.2040285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phomopsis stem canker is economically important sunflower disease that caused by multiple Diaporthe species. Recent investigations resulted in the resolution that there are at least 13 Diaporthe species that can infect sunflower. A comprehensive analysis of the biodiversity and geographic distribution of Diaporthe species in Russia, particularly those that infect sunflower, has not been undertaken. For this study, 16 Diaporthe isolates were obtained from samples of stem canker and visually healthy seeds of Helianthus annuus from northwestern, central European, southern European Russia, North Caucasus, and the Urals in 2016-2019. The aim of this study was to identify these Diaporthe isolates based on morphology and sequence analyses of the nuclear ribosomal internal transcribed spacer (ITS) region, partial calmodulin (cal), DNA-lyase (apn2), histone H3 (his3), translation elongation factor-1α gene (tef1), and ß-tubulin (tub2) genes. The phylogenetic reconstruction revealed well-supported monophyletic clades corresponding to six Diaporthe species: D. eres, D. gulyae, D. helianthi, and D. phaseolorum. Two new species were described: Diaporthe monetii sp. nov. and Diaporthe vangoghii sp. nov. The isolates of D. gulyae and D. phaseolorum collected represent the first records of these species in Russia.
Collapse
Affiliation(s)
- Maria M Gomzhina
- A. A. Jaczewskii Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, Shosse Podbelskogo 3, Pushkin, Saint Petersburg, 196608, Russia
| | - Philipp B Gannibal
- A. A. Jaczewskii Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, Shosse Podbelskogo 3, Pushkin, Saint Petersburg, 196608, Russia
| |
Collapse
|
15
|
Jiang N, Voglmayr H, Piao CG, Li Y. Two new species of Diaporthe ( Diaporthaceae, Diaporthales) associated with tree cankers in the Netherlands. MycoKeys 2021; 85:31-56. [PMID: 34934385 PMCID: PMC8648711 DOI: 10.3897/mycokeys.85.73107] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022] Open
Abstract
Diaporthe (Diaporthaceae, Diaporthales) is a common fungal genus inhabiting plant tissues as endophytes, pathogens and saprobes. Some species are reported from tree branches associated with canker diseases. In the present study, Diaporthe samples were collected from Alnusglutinosa, Fraxinusexcelsior and Quercusrobur in Utrecht, the Netherlands. They were identified to species based on a polyphasic approach including morphology, pure culture characters, and phylogenetic analyses of a combined matrix of partial ITS, cal, his3, tef1 and tub2 gene regions. As a result, four species (viz. Diaporthepseudoalnea sp. nov. from Alnusglutinosa, Diaporthesilvicola sp. nov. from Fraxinusexcelsior, D.foeniculacea and D.rudis from Quercusrobur) were revealed from tree branches in the Netherlands. Diaporthepseudoalnea differs from D.eres (syn. D.alnea) by its longer conidiophores. Diaporthesilvicola is distinguished from D.fraxinicola and D.fraxini-angustifoliae by larger alpha conidia.
Collapse
Affiliation(s)
- Ning Jiang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing 100091, China Environment and Nature Conservation, Chinese Academy of Forestry Beijing China.,The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China University of Vienna Vienna Austria
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria Beijing Forestry University Beijing China
| | - Chun-Gen Piao
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing 100091, China Environment and Nature Conservation, Chinese Academy of Forestry Beijing China
| | - Yong Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing 100091, China Environment and Nature Conservation, Chinese Academy of Forestry Beijing China
| |
Collapse
|
16
|
Wang X, Guo Y, Du Y, Yang Z, Huang X, Hong N, Xu W, Wang G. Characterization of Diaporthe species associated with peach constriction canker, with two novel species from China. MycoKeys 2021; 80:77-90. [PMID: 34054325 PMCID: PMC8149378 DOI: 10.3897/mycokeys.80.63816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/29/2021] [Indexed: 12/03/2022] Open
Abstract
Species of Diaporthe infect a wide range of plants and live in vivo as endophytes, saprobes or pathogens. However, those in peach plants are poorly characterized. In this study, 52 Diaporthe strains were isolated from peach branches with buds, showing constriction canker symptoms. Phylogenetic analyses were conducted using five gene regions: internal transcribed spacer of the ribosomal DNA (ITS), translation elongation factor 1-α (TEF), ß-tubulin (TUB), histone (HIS), and calmodulin (CAL). These results coupled with morphology revealed seven species of Diaporthe, including five known species (D. caryae, D. cercidis, D. eres, D. hongkongensis, and D. unshiuensis). In addition, two novel species D. jinxiu and D. zaofenghuang are introduced. Except for the previously reported D. eres, this study represents the first characterization of Diaporthe species associated with peach constriction canker in China, and contributes useful data for practicable disease management.
Collapse
Affiliation(s)
- Xianhong Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, ChinaHuazhong Agricultural UniversityWuhanChina
| | - Yashuang Guo
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, ChinaHuazhong Agricultural UniversityWuhanChina
| | - Yamin Du
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, ChinaHuazhong Agricultural UniversityWuhanChina
| | - Ziling Yang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, ChinaHuazhong Agricultural UniversityWuhanChina
| | - Xinzhong Huang
- Research Institute of Pomology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, ChinaKey Laboratory of Horticultural Crop Biology and Germplasm Creation of the Ministry of AgricultureWuhanChina
| | - Ni Hong
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, ChinaHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, Hubei, 430070, ChinaResearch Institute of Pomology, Fujian Academy of Agricultural SciencesFuzhouChina
| | - Wenxing Xu
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, ChinaHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, Hubei, 430070, ChinaResearch Institute of Pomology, Fujian Academy of Agricultural SciencesFuzhouChina
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, ChinaHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, Hubei, 430070, ChinaResearch Institute of Pomology, Fujian Academy of Agricultural SciencesFuzhouChina
| |
Collapse
|