1
|
van Kuijk T, Biesmeijer JC, van der Hoorn BB, Verdonschot PFM. Functional traits explain crayfish invasive success in the Netherlands. Sci Rep 2021; 11:2772. [PMID: 33531568 PMCID: PMC7854663 DOI: 10.1038/s41598-021-82302-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
Biological invasions by nonindigenous species can have negative effects on economies and ecosystems. To limit this impact, current research on biological invasions uses functional traits to facilitate a mechanistic understanding of theoretical and applied questions. Here we aimed to assess the role of functional traits in the progression of crayfish species through different stages of invasion and determine the traits associated with invasive success. A dataset of thirteen functional traits of 15 species currently occurring or available for sale in the Netherlands was evaluated. Six of these crayfish appeared invasive. Important traits distinguishing successful from unsuccessful invaders were a temperate climate in the native range, a medium to high egg count and producing more than one egg clutch per year. The most successful invaders had different functional trait combinations: Procambarus clarkii has a higher reproductive output, can migrate over longer distances and possesses a higher aggression level; Faxonius limosus is adapted to a colder climate, can reproduce parthenogetically and has broader environmental tolerances. Using a suit of functional traits to analyse invasive potential can help risk management and prevention. For example, based on our data Procambarus virginalis is predicted to become the next successful invasive crayfish in the Netherlands.
Collapse
Affiliation(s)
- Tiedo van Kuijk
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, The Netherlands.
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jacobus C Biesmeijer
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, The Netherlands
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | | | - Piet F M Verdonschot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Wageningen Environmental Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
2
|
Robinson TB, Martin N, Loureiro TG, Matikinca P, Robertson MP. Double trouble: the implications of climate change for biological invasions. NEOBIOTA 2020. [DOI: 10.3897/neobiota.62.55729] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The implications of climate change for biological invasions are multifaceted and vary along the invasion process. Changes in vectors and pathways are likely to manifest in changes in transport routes and destinations, together with altered transit times and traffic volume. Ultimately, changes in the nature of why, how, and where biota are transported and introduced will pose biosecurity challenges. These challenges will require increased human and institutional capacity, as well as proactive responses such as improved early detection, adaptation of present protocols and innovative legal instruments. Invasion success and spread are expected to be moderated by the physiological response of alien and native biota to environmental changes and the ensuing changes in biotic interactions. These in turn will likely affect management actions aimed at eradicating, containing, and mitigating invasions, necessitating an adaptive approach to management that is sensitive to potentially unanticipated outcomes.
Collapse
|
3
|
Novoa A, Richardson DM, Pyšek P, Meyerson LA, Bacher S, Canavan S, Catford JA, Čuda J, Essl F, Foxcroft LC, Genovesi P, Hirsch H, Hui C, Jackson MC, Kueffer C, Le Roux JJ, Measey J, Mohanty NP, Moodley D, Müller-Schärer H, Packer JG, Pergl J, Robinson TB, Saul WC, Shackleton RT, Visser V, Weyl OLF, Yannelli FA, Wilson JRU. Invasion syndromes: a systematic approach for predicting biological invasions and facilitating effective management. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02220-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AbstractOur ability to predict invasions has been hindered by the seemingly idiosyncratic context-dependency of individual invasions. However, we argue that robust and useful generalisations in invasion science can be made by considering “invasion syndromes” which we define as “a combination of pathways, alien species traits, and characteristics of the recipient ecosystem which collectively result in predictable dynamics and impacts, and that can be managed effectively using specific policy and management actions”. We describe this approach and outline examples that highlight its utility, including: cacti with clonal fragmentation in arid ecosystems; small aquatic organisms introduced through ballast water in harbours; large ranid frogs with frequent secondary transfers; piscivorous freshwater fishes in connected aquatic ecosystems; plant invasions in high-elevation areas; tall-statured grasses; and tree-feeding insects in forests with suitable hosts. We propose a systematic method for identifying and delimiting invasion syndromes. We argue that invasion syndromes can account for the context-dependency of biological invasions while incorporating insights from comparative studies. Adopting this approach will help to structure thinking, identify transferrable risk assessment and management lessons, and highlight similarities among events that were previously considered disparate invasion phenomena.
Collapse
|
4
|
Dickey JW, Cuthbert RN, Rea M, Laverty C, Crane K, South J, Briski E, Chang X, Coughlan NE, MacIsaac HJ, Ricciardi A, Riddell GE, Xu M, Dick JT. Assessing the relative potential ecological impacts and invasion risks of emerging and future invasive alien species. NEOBIOTA 2018. [DOI: 10.3897/neobiota.39.28519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive alien species (IAS) cause myriad negative impacts, such as ecosystem disruption, human, animal and plant health issues, economic damage and species extinctions. There are many sources of emerging and future IAS, such as the poorly regulated international pet trade. However, we lack methodologies to predict the likely ecological impacts and invasion risks of such IAS which have little or no informative invasion history. This study develops the Relative Impact Potential (RIP) metric, a new measure of ecological impact that incorporates per capita functional responses (FRs) and proxies for numerical responses (NRs) associated with emerging invaders. Further, as propagule pressure is a determinant of invasion risk, we combine the new measure of Pet Propagule Pressure (PPP) with RIP to arrive at a second novel metric, Relative Invasion Risk (RIR). We present methods to calculate these metrics and to display the outputs on intuitive bi- and triplots. We apply RIP/RIR to assess the potential ecological impacts and invasion risks of four commonly traded pet turtles that represent emerging IAS: Trachemysscriptascripta, the yellow-bellied slider; T.s.troostii, the Cumberland slider; Sternotherusodoratus, the common musk turtle; and Kinosternonsubrubrum, the Eastern mud turtle. The high maximum feeding rate and high attack rate of T.s.scripta, combined with its numerical response proxies of lifespan and fecundity, gave it the highest impact potential. It was also the second most readily available according to our UK surveys, indicating a high invasion risk. Despite having the lowest maximum feeding rate and attack rate, S.odoratus has a high invasion risk due to high availability and we highlight this species as requiring monitoring. The RIP/RIR metrics offer two universally applicable methods to assess potential impacts and risks associated with emerging and future invaders in the pet trade and other sources of future IAS. These metrics highlight T.s.scripta as having high impact and invasion risk, corroborating its position on the EU list of 49 IAS of Union Concern. This suggests our methodology and metrics have great potential to direct future IAS policy decisions and management. This, however, relies on collation and generation of new data on alien species functional responses, numerical responses and their proxies, and imaginative measures of propagule pressure.
Collapse
|
5
|
Dickey JW, Cuthbert RN, Rea M, Laverty C, Crane K, South J, Briski E, Chang X, Coughlan NE, MacIsaac HJ, Ricciardi A, Riddell GE, Xu M, Dick JT. Assessing the relative potential ecological impacts and invasion risks of emerging and future invasive alien species. NEOBIOTA 2018. [DOI: 10.3897/neobiota.40.28519] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive alien species (IAS) cause myriad negative impacts, such as ecosystem disruption, human, animal and plant health issues, economic damage and species extinctions. There are many sources of emerging and future IAS, such as the poorly regulated international pet trade. However, we lack methodologies to predict the likely ecological impacts and invasion risks of such IAS which have little or no informative invasion history. This study develops the Relative Impact Potential (RIP) metric, a new measure of ecological impact that incorporates per capita functional responses (FRs) and proxies for numerical responses (NRs) associated with emerging invaders. Further, as propagule pressure is a determinant of invasion risk, we combine the new measure of Pet Propagule Pressure (PPP) with RIP to arrive at a second novel metric, Relative Invasion Risk (RIR). We present methods to calculate these metrics and to display the outputs on intuitive bi- and triplots. We apply RIP/RIR to assess the potential ecological impacts and invasion risks of four commonly traded pet turtles that represent emerging IAS: Trachemysscriptascripta, the yellow-bellied slider; T.s.troostii, the Cumberland slider; Sternotherusodoratus, the common musk turtle; and Kinosternonsubrubrum, the Eastern mud turtle. The high maximum feeding rate and high attack rate of T.s.scripta, combined with its numerical response proxies of lifespan and fecundity, gave it the highest impact potential. It was also the second most readily available according to our UK surveys, indicating a high invasion risk. Despite having the lowest maximum feeding rate and attack rate, S.odoratus has a high invasion risk due to high availability and we highlight this species as requiring monitoring. The RIP/RIR metrics offer two universally applicable methods to assess potential impacts and risks associated with emerging and future invaders in the pet trade and other sources of future IAS. These metrics highlight T.s.scripta as having high impact and invasion risk, corroborating its position on the EU list of 49 IAS of Union Concern. This suggests our methodology and metrics have great potential to direct future IAS policy decisions and management. This, however, relies on collation and generation of new data on alien species functional responses, numerical responses and their proxies, and imaginative measures of propagule pressure.
Collapse
|