1
|
Li XD, Chen Y, Zhang CL, Wang J, Song XJ, Zhang XR, Zhu ZH, Liu G. Assessing the climatic niche changes and global invasion risk of Solanum elaeagnifolium in relation to human activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176723. [PMID: 39383952 DOI: 10.1016/j.scitotenv.2024.176723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
As an invasive plant, Solanum elaeagnifolium has posed a serious threat to agriculture and natural ecosystems worldwide. In order to better manage and limit its spread, we established niche models by combining distribution information and climate data from the native and invasive ranges of S. elaeagnifolium to analyze its niche changes during its colonization. Additionally, we evaluated its global invasion risk. Our results showed that the distribution of S. elaeagnifolium is affected by temperature, precipitation, altitude, and human activities. Solanum elaeagnifolium exhibits different degrees of niche conservatism and niche shift in different invasion ranges. During the global invasion of S. elaeagnifolium, both the niche shift and conservatism were observed, however, niche shift was particularly significant due to the presence of unoccupied niches (niche unfilling). Solanum elaeagnifolium generally occupied a relatively stable niche. However, a notable expansion was observed primarily in Europe and China. In Australia and Africa, its niche largely remains a subset of its native niche. Compared to the niche observed in its native range, its realized niche in China and Europe has shifted toward lower temperature and higher precipitation levels. Conversely, in Africa, the niche has shifted toward lower precipitation levels, while in Australia, it has shifted toward higher temperature. Our model predicted that S. elaeagnifolium has high invasion potential in many countries and regions. The populations of S. elaeagnifolium in China and Africa have reached the adapted stage, while the populations in Australia and Europe are currently in the stabilization stage. In addition, our research suggests that the potential distribution of S. elaeagnifolium will expand further in the future as the climate warms. All in all, our study suggests that S. elaeagnifolium has high potential to invade globally. Due to its high invasive potential, global surveillance and preventive measures are necessary to address its spread.
Collapse
Affiliation(s)
- Xin-Di Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Yu Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Chun-Ling Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Jia Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Xing-Jiang Song
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Xian-Rui Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Zhi-Hong Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China; Research Center for UAV Remote Sensing, Shaanxi Normal University, Xi'an 710119, People's Republic of China; Changqing Teaching & Research Base of Ecology, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Gang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China; Research Center for UAV Remote Sensing, Shaanxi Normal University, Xi'an 710119, People's Republic of China; Changqing Teaching & Research Base of Ecology, Shaanxi Normal University, Xi'an 710119, People's Republic of China.
| |
Collapse
|
2
|
Xian X, Zhao H, Wang R, Huang H, Chen B, Zhang G, Liu W, Wan F. Climate change has increased the global threats posed by three ragweeds (Ambrosia L.) in the Anthropocene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160252. [PMID: 36427731 DOI: 10.1016/j.scitotenv.2022.160252] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Invasive alien plants (IAPs) substantially affect the native biodiversity, agriculture, industry, and human health worldwide. Ambrosia (ragweed) species, which are major IAPs globally, produce a significant impact on human health and the natural environment. In particular, invasion of A. artemisiifolia, A. psilostachya, and A. trifida in non-native continents is more extensive and severe than that of other species. Here, we used biomod2 ensemble model based on environmental and species occurrence data to predict the potential geographical distribution, overlapping geographical distribution areas, and the ecological niche dynamics of these three ragweeds and further explored the environmental variables shaping the observed patterns to assess the impact of these IAPs on the natural environment and public health. The ecological niche has shifted in the invasive area compared with that in the native area, which increased the invasion risk of three Ambrosia species during the invasion process in the world. The potential geographical distribution and overlapping geographical distribution areas of the three Ambrosia species are primarily distributed in Asia, North America, and Europe, and are expected to increase under four representative concentration pathways in the 2050s. The centers of potential geographical distributions of the three Ambrosia species showed a tendency to shift poleward from the current time to the 2050s. Bioclimatic variables and the human influence index were more significant in shaping these patterns than other factors. In brief, climate change has facilitated the expansion of the geographical distribution and overlapping geographical distribution areas of the three Ambrosia species. Ecomanagement and cross-country management strategies are warranted to mitigate the future effects of the expansion of these ragweed species worldwide in the Anthropocene on the natural environment and public health.
Collapse
Affiliation(s)
- Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Haoxiang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Rui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Hongkun Huang
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Baoxiong Chen
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Guifen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China.
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| |
Collapse
|
3
|
Frank DA, Becklin KM, Penner JF, Lindsay KA, Geremia CJ. Feast or famine: How is global change affecting forage supply for Yellowstone's ungulate herds? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2735. [PMID: 36057540 PMCID: PMC10078388 DOI: 10.1002/eap.2735] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The ecological integrity of US national parks and other protected areas are under threat in the Anthropocene. For Yellowstone National Park (YNP), the impacts that global change has already had on the park's capacity to sustain its large migratory herds of wild ungulates is incompletely understood. Here we examine how two understudied components of global change, the historical increase in atmospheric CO2 and the spread of nonnative, invasive plant species, may have altered the capacity of YNP to provide forage for ungulates over the last 200-plus years. We performed two experiments: (1) a growth chamber study that determined the growth rates of important invasive and native YNP grasses that are forages for ungulates under preindustrial (280 ppm) versus modern (410 ppm) CO2 levels and (2) a field study that compared the effect of defoliation (clipping) on the shoot growth of invasive and native mesic grassland plants under ambient CO2 conditions in 2019. The growth chamber experiment revealed that modern CO2 increased the growth rates of both invasive and native grasses, and invasive grasses grew faster regardless of CO2 conditions. The field results showed a continuum of positive to negative responses of shoot growth to defoliation, with a subgroup of invasive species responding most positively. Altogether the results indicated that the historical increase in CO2 and the spread of invasive species, some of which were planted to provide forage for ungulates in the early and mid-1900s, have likely increased the capacity of forage production in YNP. However, rising CO2 has also resulted in regional warming and increased aridity in YNP, which will likely reduce grassland productivity. The challenge for global change biologists and park managers is to determine how competing components of global change have already affected and will increasingly affect forage dynamics and the sustainability of Yellowstone's iconic ungulate herds in the Anthropocene.
Collapse
|
4
|
Larson CD, Rew LJ. Restoration intensity shapes floristic recovery after forest road decommissioning. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115729. [PMID: 35853306 DOI: 10.1016/j.jenvman.2022.115729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/29/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Forest roads fragment and degrade ecosystems and many have fallen into disrepair and are underutilized, to address these issues the United States Forest Service is restoring, or "decommissioning," thousands of kilometers of forest roads each year. Despite the prevalence of decommissioning and the importance of vegetation to restoration success, relatively little is known about floristic responses to different forest road decommissioning treatments or subsequent recovery to reference conditions. Over a ten year period, this study assessed floristic cover, diversity, and composition responses to and recovery on forest roads decommissioned using three treatments varying in intensity (abandonment, ripping, recontouring), in Montana, USA. Initially, floristic cover groups were lowest on the recontoured roads, however, they demonstrated the fastest temporal response (e.g. increased litter and vegetative cover). The floristic communities of both active treatments (ripped and recontoured) had more species and were more diverse than the communities of the abandoned (control) treatment. Among the three on-road plant communities, the recontoured treatment was most associated with desirable species, including the native shrubs Rosa woodsii and Spirea betulifolia, while the abandoned treatment was most associated with two non-native species, Taraxacum officinale and Trifolium repens. Assessed using a restoration index, recovery to reference conditions was limited in all treatments, however, the recontoured treatment had a positive restoration trajectory in seven of eight metrics and was the best recovered treatment. Community composition on the recontoured treatment had more native species than the other treatments, and was moving toward, though still substantially different from, reference communities. These findings demonstrate that restoration of forest roads benefit from active restoration methods and, while forest road recontouring facilitates floristic recovery in the first decade after decommissioning, full recovery will likely take years to decades longer.
Collapse
Affiliation(s)
- Christian D Larson
- Department of Land Resources and Environmental Sciences, Montana State University, 334 Leon Johnson Hall, Bozeman, MT, 59717, United States.
| | - Lisa J Rew
- Department of Land Resources and Environmental Sciences, Montana State University, 334 Leon Johnson Hall, Bozeman, MT, 59717, United States
| |
Collapse
|
5
|
The Upper Range Limit of Alien Plants Is Not in Equilibrium with Climate in the Andes of Central Chile. PLANTS 2022; 11:plants11182345. [PMID: 36145746 PMCID: PMC9501811 DOI: 10.3390/plants11182345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
Alien plant species are colonizing high-elevation areas along roadsides. In this study, we evaluated whether the distributions of alien plants in the central Chilean mountains have reached climatic equilibrium (i.e., upper distribution limits consistent with their climatic requirements). First, we evaluated whether the upper elevational limits of alien plants changed between 2008 and 2018 based on the Mountain Invasion Research Network (MIREN) database. Second, we compared the observed upper elevational limits with the upper limits predicted by each species’ global climatic niche. On average across species, the upper elevation limit did not change between 2008 and 2018. However, most species maintained the same limit or shifted downward, while only 23% of the species shifted upwards. This lack of change does not mean that the species’ distributions are in equilibrium with the climate, because the observed upper limit was lower than the limit predicted by the global niche model for 87% of species. Our results suggest that alien species in this study region may not only be climate-limited, but could also be limited by other local-scale factors, such as seed dispersal, intermittent disturbance rates, soil type and biotic interactions.
Collapse
|