1
|
Pullock DA, Krüger K, Manrakhan A, Yusuf AA, Weldon CW. Addition of Selected Plant-Derived Semiochemicals to Yellow Sticky Traps Does Not Improve Citrus Psyllid Captures. J Chem Ecol 2024; 50:701-713. [PMID: 38568416 PMCID: PMC11543742 DOI: 10.1007/s10886-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 11/08/2024]
Abstract
Fast and effective monitoring and surveillance techniques are crucial for the swift implementation of control methods to prevent the spread of Huanglongbing, a devastating citrus disease, and its invasive psyllid vector, Asian citrus psyllid, Diaphorina citri, into South Africa, as well as to control the native vector, African citrus triozid, Trioza erytreae. Monitoring for citrus psyllid pests can be improved by using semiochemical odorants to augment already visually attractive yellow sticky traps. However, environmental variables such as temperature and humidity could influence odorant release rates. Five field cages were used to test the ability of a selection of odorants to improve yellow sticky trap efficacy in capturing citrus psyllids. Environmental effects on odorant loss from the dispensers were also investigated. The odorants that most improved yellow sticky trap captures in field cages were then tested under open field conditions alongside lower concentrations of those same lures. Gas chromatography-mass spectrometry was used to calculate odorant release rates as well as to determine if any contamination occurred under field conditions. None of the odorants under field cage or field conditions significantly improved psyllid capture on yellow sticky traps. Temperature influenced odorant loss, and release rate from polyethylene bulbs decreased over time. Based on these results, the use of unbaited yellow sticky traps seems to be the most effective method for monitoring of Huanglongbing vectors.
Collapse
Affiliation(s)
- Dylan A Pullock
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Kerstin Krüger
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Hatfield, Pretoria, 0028, South Africa
- KWS SAAT SE & Co. KGaA, Einbeck, 37574, Germany
| | - Aruna Manrakhan
- Citrus Research International, Mbombela, 1200, South Africa
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch University, Private Bag X1, Stellenbosch, Matieland, 7602, South Africa
| | - Abdullahi A Yusuf
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Christopher W Weldon
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
| |
Collapse
|
2
|
Błońska D, Grabowska J, Tarkan AS, Soto I, Haubrock PJ. Prioritising non-native fish species for management actions in three Polish rivers using the newly developed tool-dispersal-origin-status-impact scheme. PeerJ 2024; 12:e18300. [PMID: 39494268 PMCID: PMC11531750 DOI: 10.7717/peerj.18300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024] Open
Abstract
Background Biological invasions are a major threat to global biodiversity, with freshwater ecosystems being among the most susceptible to the successful establishment of non-native species and their respective potential impacts. In Poland, the introduction and spreading of non-native fish has led to biodiversity loss and ecosystem homogenisation. Methods Our study applies the Dispersal-Origin-Status-Impact (DOSI) assessment scheme, which is a population-level specific assessment that integrates multiple factors, including dispersal mechanisms, origin, status, and impacts, providing a nuanced framework for assessing invasion risks at local and regional levels. We used this tool to evaluate the risks associated with non-native fish species across three major Polish rivers (Pilica, Bzura, and Skrwa Prawa) and to prioritise them for management actions. Results Using DOSI, we assessed eight non-native species identified in the three studied rivers: seven in both Pilica and Bzura and four in Skrwa Prawa. The DOSI assessment scheme identified high variability in the ecological impacts and management priorities among the identified non-native species. Notably, species such as the Ponto-Caspian gobies exhibited higher risk levels due to their rapid spread and considerable ecological effects, contrasting with other species that demonstrated lower impact levels and, hence, received a lower priority for intervention. Conclusion The adoption of the DOSI scheme in three major rivers in Poland has provided valuable insights into the complexities of managing biological invasions, suggesting that localised, detailed assessments are crucial for effective conservation strategies and highlighting the importance of managing non-native populations locally.
Collapse
Affiliation(s)
- Dagmara Błońska
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Department of Life and Environmental Sciences, Faculty of Science and Technology, University of Bournemouth, Bournemouth, United Kingdom
| | - Joanna Grabowska
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ali S. Tarkan
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Phillip J. Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhause, Germany
- CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| |
Collapse
|
3
|
Araújo FVD, Duque TS, Ferreira EA, Pereira IM, Souza IM, Oliveira FS, Dos Santos JB. Nutrient Allocation and Growth Responses of Senegalia polyphylla under Varied Fertilizer Regimes for Effective Forest Recovery. PLANTS (BASEL, SWITZERLAND) 2024; 13:2420. [PMID: 39273904 PMCID: PMC11397476 DOI: 10.3390/plants13172420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
To restore invaded areas, planting fast-growing native species such as Senegalia polyphylla (DC.) Britton & Rose (Fabaceae) is widely used. However, invasive grasses reduce light availability, alter fire regimes, and compete for water and nutrients, hindering the growth of native trees. Fertilization practices influence the competition dynamics between natives and invasives by altering soil fertility. Therefore, this study investigated the effects of mineral and organic fertilization on the nutritional status and growth of S. polyphylla cultivated during the first 120 days after transplanting. The experiment was conducted in a completely randomized design comprising five treatments and four replications, along with the unfertilized control (0-0%) as an additional treatment. Dystrophic red latosol and different proportions of mineral and organic fertilizers were used. The variables evaluated included dry mass of aboveground parts and roots, nutrient content in leaves, and nutrient use efficiency. The results showed that fertilizations with high nutrient concentrations (100-0% and 75-25%) resulted in greater accumulation of N, P, and K in the leaves, while balanced fertilization (50-50% and 25-75%) led to greater root dry mass. These results emphasize the importance of strategically choosing fertilizer formulations to promote the healthy development of seedlings in areas subject to interference from invasive grasses.
Collapse
Affiliation(s)
- Fillipe Vieira de Araújo
- Department of Forestry Engineering, Federal University of Vales do Jequitinhonha and Mucuri, Diamantina 39100-000, MG, Brazil
| | - Tayna Sousa Duque
- Department of Agronomy, Federal University of Vales do Jequitinhonha and Mucuri, Diamantina 39100-000, MG, Brazil
| | - Evander Alves Ferreira
- Department of Agronomy, Federal University of Vales do Jequitinhonha and Mucuri, Diamantina 39100-000, MG, Brazil
| | - Israel Marinho Pereira
- Department of Forestry Engineering, Federal University of Vales do Jequitinhonha and Mucuri, Diamantina 39100-000, MG, Brazil
| | - Iasmim Marcella Souza
- Department of Agronomy, Federal University of Vales do Jequitinhonha and Mucuri, Diamantina 39100-000, MG, Brazil
| | - Fernanda Santos Oliveira
- Department of Agronomy, Federal University of Vales do Jequitinhonha and Mucuri, Diamantina 39100-000, MG, Brazil
| | - José Barbosa Dos Santos
- Department of Agronomy, Federal University of Vales do Jequitinhonha and Mucuri, Diamantina 39100-000, MG, Brazil
| |
Collapse
|
4
|
Tarkan AS, Bayçelebi E, Giannetto D, Özden ED, Yazlık A, Emiroğlu Ö, Aksu S, Uludağ A, Aksoy N, Baytaşoğlu H, Kaya C, Mutlu T, Kırankaya ŞG, Ergüden D, Per E, Üremiş İ, Candan O, Kekillioğlu A, Yoğurtçuoğlu B, Ekmekçi FG, Başak E, Özkan H, Kurtul I, Innal D, Killi N, Yapıcı S, Ayaz D, Çiçek K, Mol O, Çınar E, Yeğen V, Angulo E, Cuthbert RN, Soto I, Courchamp F, Haubrock PJ. Economic costs of non-native species in Türkiye: A first national synthesis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120779. [PMID: 38599083 DOI: 10.1016/j.jenvman.2024.120779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Biological invasions are increasingly recognised as a major global change that erodes ecosystems, societal well-being, and economies. However, comprehensive analyses of their economic ramifications are missing for most national economies, despite rapidly escalating costs globally. Türkiye is highly vulnerable to biological invasions owing to its extensive transport network and trade connections as well as its unique transcontinental position at the interface of Europe and Asia. This study presents the first analysis of the reported economic costs caused by biological invasions in Türkiye. The InvaCost database which compiles invasive non-native species' monetary costs was used, complemented with cost searches specific to Türkiye, to describe the spatial and taxonomic attributes of costly invasive non-native species, the types of costs, and their temporal trends. The total economic cost attributed to invasive non-native species in Türkiye (from 202 cost reporting documents) amounted to US$ 4.1 billion from 1960 to 2022. However, cost data were only available for 87 out of 872 (10%) non-native species known for Türkiye. Costs were biased towards a few hyper-costly non-native taxa, such as jellyfish, stink bugs, and locusts. Among impacted sectors, agriculture bore the highest total cost, reaching US$ 2.85 billion, followed by the fishery sector with a total cost of US$ 1.20 billion. Management (i.e., control and eradication) costs were, against expectations, substantially higher than reported damage costs (US$ 2.89 billion vs. US$ 28.4 million). Yearly costs incurred by non-native species rose exponentially over time, reaching US$ 504 million per year in 2020-2022 and are predicted to increase further in the next 10 years. A large deficit of cost records compared to other countries was also shown, suggesting a larger monetary underestimate than is typically observed. These findings underscore the need for improved cost recording as well as preventative management strategies to reduce future post-invasion management costs and help inform decisions to manage the economic burdens posed by invasive non-native species. These insights further emphasise the crucial role of standardised data in accurately estimating the costs associated with invasive non-native species for prioritisation and communication purposes.
Collapse
Affiliation(s)
- Ali Serhan Tarkan
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Department of Aquatic Basic Science, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Türkiye; Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, United Kingdom.
| | - Esra Bayçelebi
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Daniela Giannetto
- Department of Biology, Faculty of Sciences, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Emine Demir Özden
- Department of Plant Protection, Faculty of Agriculture, Düzce University, Düzce, Türkiye
| | - Ayşe Yazlık
- Department of Plant Protection, Faculty of Agriculture, Düzce University, Düzce, Türkiye
| | - Özgür Emiroğlu
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Sadi Aksu
- Vocational School of Health Services, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Ahmet Uludağ
- Plant Protection Department, Faculty of Agriculture, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Necmi Aksoy
- Department of Forest Botany, Faculty of Forestry, Düzce University, Düzce, Türkiye
| | - Hazel Baytaşoğlu
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Cüneyt Kaya
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Tanju Mutlu
- Vocational School of Technical Sciences, Environmental Protection Technologies Department, Recep Tayyip Erdoğan University, Türkiye
| | | | - Deniz Ergüden
- Department of Marine Sciences, Faculty of Marine Sciences and Technology, İskenderun Technical University, İskenderun, Türkiye
| | - Esra Per
- Department of Biology, Faculty of Science, Gazi University, Ankara, Türkiye
| | - İlhan Üremiş
- Plant Protection Department, Faculty of Agriculture, Hatay Mustafa Kemal University, Antakya, Hatay, Türkiye
| | - Onur Candan
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ordu University, Ordu, Türkiye
| | - Aysel Kekillioğlu
- Department of Biology, Faculty of Science and Literature, Nevşehir HBV University, Nevşehir, Türkiye
| | - Baran Yoğurtçuoğlu
- Department of Biology, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara, Türkiye
| | - F Güler Ekmekçi
- Department of Biology, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara, Türkiye
| | - Esra Başak
- Project House Cooperative, Moda Caddesi Borucu Han No:20/204 Kadıköy, Istanbul, Türkiye
| | - Hatice Özkan
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Türkiye
| | - Irmak Kurtul
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, United Kingdom; Marine and Inland Waters Sciences and Technology Department, Faculty of Fisheries, Ege University, İzmir, Türkiye
| | - Deniz Innal
- Department of Biology, Faculty of Sciences and Literature, Burdur Mehmet Akif Ersoy University, Burdur, Türkiye
| | - Nurçin Killi
- Department of Aquatic Basic Science, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Sercan Yapıcı
- Department of Aquatic Basic Science, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Dinçer Ayaz
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | - Kerim Çiçek
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye; Natural History Application and Research Centre, Ege University, Izmir, Türkiye
| | - Oğuzcan Mol
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Emre Çınar
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Vedat Yeğen
- Fisheries Research Institute, Eğirdir, Isparta, Türkiye
| | - Elena Angulo
- Estación Biológica de Doñana, CSIC, Avda. Americo Vespucio 26, 41092, Seville, Spain
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, United Kingdom
| | - Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif sur Yvette, France
| | - Phillip J Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait.
| |
Collapse
|
5
|
López‐Aguilar TP, Montalva J, Vilela B, Arbetman MP, Aizen MA, Morales CL, Silva DDP. Niche analyses and the potential distribution of four invasive bumblebees worldwide. Ecol Evol 2024; 14:e11200. [PMID: 38571800 PMCID: PMC10985363 DOI: 10.1002/ece3.11200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
The introduction of bees for agricultural production in distinct parts of the world and poor management have led to invasion processes that affect biodiversity, significantly impacting native species. Different Bombus species with invasive potential have been recorded spreading in different regions worldwide, generating ecological and economic losses. We applied environmental niche and potential distribution analyses to four species of the genus Bombus to evaluate the similarities and differences between their native and invaded ranges. We found that B. impatiens has an extended environmental niche, going from dry environmental conditions in the native range to warmer and wetter conditions in the invaded range. Bombus ruderatus also exhibited an extended environmental niche with drier and warmer conditions in the invaded range than in its native range. Bombus subterraneus expanded its environmental niche from cooler and wetter conditions in the native range to drier and warmer conditions in the invaded range. Finally, B. terrestris showed the most significant variation in the environmental niche, extending to areas with similar and different environmental conditions from its native range. The distribution models agreed with the known distributions for the four Bombus species, presenting geographic areas known to be occupied by each species in different regions worldwide. The niche analysis indicate shifts in the niches from the native to the invaded distribution area of the bee species. Still, niche similarities were observed in the areas of greatest suitability in the potential distribution for B. ruderatus, B. subterraneus, and B. terrestris, and to a lesser degree in the same areas with B. impatiens. These species require similar environmental conditions as in their native ranges to be established in their introduced ranges. Still, they can adapt to changes in temperature and humidity, allowing them to expand their ranges into new climatic conditions.
Collapse
Affiliation(s)
- Tania Paola López‐Aguilar
- Graduate Program in Natural Resources of the CerradoState University of GoiásAnápolisBrazil
- Department of BiologyNational Autonomous University of Honduras in the Sula Valley (UNAH‐VS)San Pedro SulaHonduras
| | - Jose Montalva
- Department of Biological and Environmental SciencesEast Central UniversityAdaOklahomaUSA
| | - Bruno Vilela
- Institute of BiologyFederal University of BahiaSalvadorBrazil
| | - Marina P. Arbetman
- Grupo de Ecología de la Polinización (EcoPol)INIBIOMA (CONICET, Universidad Nacional del Comahue)San Carlos de BarilocheArgentina
| | - Marcelo A. Aizen
- Grupo de Ecología de la Polinización (EcoPol)INIBIOMA (CONICET, Universidad Nacional del Comahue)San Carlos de BarilocheArgentina
| | - Carolina L. Morales
- Grupo de Ecología de la Polinización (EcoPol)INIBIOMA (CONICET, Universidad Nacional del Comahue)San Carlos de BarilocheArgentina
| | - Daniel de Paiva Silva
- Departamento de Ciências Biológicas, Conservation Biogegraphy and Macroecology Laboratory (COBIMA LAB)Instituto Federal GoianoUrutaíBrazil
| |
Collapse
|
6
|
Heringer G, Fernandez RD, Bang A, Cordonnier M, Novoa A, Lenzner B, Capinha C, Renault D, Roiz D, Moodley D, Tricarico E, Holenstein K, Kourantidou M, Kirichenko NI, Adelino JRP, Dimarco RD, Bodey TW, Watari Y, Courchamp F. Economic costs of invasive non-native species in urban areas: An underexplored financial drain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170336. [PMID: 38280594 DOI: 10.1016/j.scitotenv.2024.170336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Urbanization is an important driver of global change associated with a set of environmental modifications that affect the introduction and distribution of invasive non-native species (species with populations transported by humans beyond their natural biogeographic range that established and are spreading in their introduced range; hereafter, invasive species). These species are recognized as a cause of large ecological and economic losses. Nevertheless, the economic impacts of these species in urban areas are still poorly understood. Here we present a synthesis of the reported economic costs of invasive species in urban areas using the global InvaCost database, and demonstrate that costs are likely underestimated. Sixty-one invasive species have been reported to cause a cumulative cost of US$ 326.7 billion in urban areas between 1965 and 2021 globally (average annual cost of US$ 5.7 billion). Class Insecta was responsible for >99 % of reported costs (US$ 324.4 billion), followed by Aves (US$ 1.4 billion), and Magnoliopsida (US$ 494 million). The reported costs were highly uneven with the sum of the five costliest species representing 80 % of reported costs. Most reported costs were a result of damage (77.3 %), principally impacting public and social welfare (77.9 %) and authorities-stakeholders (20.7 %), and were almost entirely in terrestrial environments (99.9 %). We found costs reported for 24 countries. Yet, there are 73 additional countries with no reported costs, but with occurrences of invasive species that have reported costs in other countries. Although covering a relatively small area of the Earth's surface, urban areas represent about 15 % of the total reported costs attributed to invasive species. These results highlight the conservative nature of the estimates and impacts, revealing important biases present in the evaluation and publication of reported data on costs. We emphasize the urgent need for more focused assessments of invasive species' economic impacts in urban areas.
Collapse
Affiliation(s)
- Gustavo Heringer
- Nürtingen-Geislingen University (HfWU), Schelmenwasen 4-8, 72622 Nürtingen, Germany; Programa de Pós-Graduação em Ecologia Aplicada, Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras (UFLA), CEP 37200-900 Lavras, MG, Brazil.
| | - Romina D Fernandez
- Instituto de Ecología Regional, Universidad Nacional de Tucumán-CONICET, CC 34, 4107 Yerba Buena, Tucumán, Argentina
| | - Alok Bang
- Society for Ecology Evolution and Development, Wardha 442001, India; Biology Group, School of Arts and Sciences, Azim Premji University, Bhopal 462022, India
| | - Marion Cordonnier
- Lehrstuhl für Zoologie/Evolutionsbiologie, Univ. Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Ana Novoa
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, CZ-25243 Průhonice, Czech Republic
| | - Bernd Lenzner
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - César Capinha
- Centre of Geographical Studies, Institute of Geography and Spatial Planning, University of Lisbon, Rua Branca Edmée Marques, 1600-276 Lisboa, Portugal; Associate Laboratory Terra, Portugal
| | - David Renault
- University of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR, 6553 Rennes, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - David Roiz
- MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier 34394, France
| | - Desika Moodley
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, CZ-25243 Průhonice, Czech Republic
| | - Elena Tricarico
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, FI, Italy
| | - Kathrin Holenstein
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Melina Kourantidou
- Department of Sociology, Environmental and Business Economics, University of Southern Denmark, Degnevej 14, 6705 Esbjerg Ø, Denmark; UMR 6308, AMURE, Université de Bretagne Occidentale, IUEM, rue Dumont d'Urville, 29280 Plouzané, France
| | - Natalia I Kirichenko
- Sukachev Institute of Forest Siberian Branch of Russian Academy of Sciences, Federal Research Center «Krasnoyarsk Science Center SB RAS», Krasnoyarsk 660036, Russia; Siberian Federal University, Krasnoyarsk 660041, Russia; All-Russian Plant Quarantine Center, Krasnoyarsk branch, Krasnoyarsk 660020, Russia
| | - José Ricardo Pires Adelino
- Laboratório de Ecologia Evolutiva e Conservação, Departamento de Biologia Animal e Vegetal, Universidade Estadual de Londrina, CP 6001, Londrina 86051-970, Brazil
| | - Romina D Dimarco
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Grupo de Ecología de Poblaciones de Insectos, IFAB (INTA-CONICET), Bariloche, RN, Argentina
| | - Thomas W Bodey
- School of Biological Sciences, King's College, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Yuya Watari
- Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190 Gif-Sur-Yvette, France
| |
Collapse
|
7
|
Savaris M, Saldanha AV, Corrêa AS, Rainho HL, Scarpare Filho JA, Silveira Neto S, Zucchi RA. Establishment of Sinoxylon anale Lesne (Coleoptera, Bostrichidae) in Brazil: Identification, Host Plants, Distribution, and Damage. NEOTROPICAL ENTOMOLOGY 2023; 52:1144-1154. [PMID: 37819481 DOI: 10.1007/s13744-023-01087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Damage from Sinoxylon anale Lesne, a woodboring beetle not previously known to be established in Brazil, was observed in young jabuticaba trees (Plinia cauliflora, Myrtaceae) in a nursery in the municipality of Laranjal Paulista, state of São Paulo. We immediately advised MAPA ("Ministério da Agricultura, Pecuária e Abastecimento") and collected samples from the nursery and from different hosts in nearby areas, to identify the specimens and investigate the dynamics of the infestation in the jabuticaba trees. Sinoxylon anale was also collected in ethanol-baited and ultraviolet-light traps and in dry branches of the native species pau-jacaré (Piptadenia gonoacantha, Fabaceae) and inga (Inga vera, Fabaceae), and the exotic pau-d'água (Dracaena fragrans, Asparagaceae) in the municipality of Piracicaba, state of São Paulo. These collections established that S. anale larvae and adults develop in dead branches of four new host plants. Taxonomic studies using morphological parameters and DNA barcoding confirmed the identification of S. anale. An illustrated key to the three Sinoxylon species now recorded in Brazil is provided, and the COI gene sequences have been made available in a public database. Sinoxylon anale probably attacked the young jabuticaba trees after they were killed by larvae of long-horned beetles (Cerambycidae). So far, S. anale has been found established only in two locations in the same area of the state of São Paulo.
Collapse
Affiliation(s)
- Marcoandre Savaris
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil.
| | - Alan Valdir Saldanha
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Alberto Soares Corrêa
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Hugo Leoncini Rainho
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - João Alexio Scarpare Filho
- Departament of Crop Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Sinval Silveira Neto
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Roberto Antonio Zucchi
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
8
|
Monroe TGR, Cantanhêde SPD, Sousa NSM, Monroe NB, Piorski NM, Tchaicka L. Inventory reveals non-native species and variation in spatial-temporal dynamics of fish community in a Brazilian protected area. BRAZ J BIOL 2023; 83:e274232. [PMID: 37970901 DOI: 10.1590/1519-6984.274232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/22/2023] [Indexed: 11/19/2023] Open
Abstract
The increase in the number of Brazilian protected areas has been progressive and, although it is essential for the conservation of biodiversity, it is important to monitor and properly manage these areas, as they present several cases of biological invasions. The Lençóis Maranhenses constitute the peculiar delta of the Americas and are under the consequences of the bioinvasion of tilapias and peacock bass. Collections were carried out in the Lençóis Maranhenses National Park from March/2016 to November/2020, with the aid of gill nets and cast nets. The species were identified with the help of specialized literature and a historical comparison with previous works was carried out. Cytochrome oxidase subunit I was sequenced to confirm identification of non-native species. We recorded the expansion of the occurrence of Oreochromis niloticus, and the first record of the species Oreochromis mossambicus and Cichla monoculus. A total of 31 species belonging to eight orders, eighteen families and twenty-nine genera were identified, indicating a lag in the diversity of species found in relation to previous studies. After 20 years of the first record of invasive fish, there is an expansion of bioinvasion and new cases that indicate a lack of monitoring and containment measures for the species, indicating the fragility of conservation in the area.
Collapse
Affiliation(s)
- T G R Monroe
- Universidade Federal do Maranhão - UFMA, Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, São Luís, MA, Brasil
| | - S P D Cantanhêde
- Universidade Estadual do Maranhão - UEMA, Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, São Luís, MA, Brasil
| | - N S M Sousa
- Universidade Estadual do Maranhão - UEMA, Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, São Luís, MA, Brasil
| | - N B Monroe
- Instituto Federal de Educação, Ciência e Tecnologia do Maranhão - IFMA, São Raimundo das Mangabeiras, MA, Brasil
| | - N M Piorski
- Universidade Federal do Maranhão - UFMA, Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, São Luís, MA, Brasil
- Universidade Federal do Maranhão - UFMA, Departamento de Biologia, São Luís, MA, Brasil
- Universidade Federal do Maranhão - UFMA, Laboratório de Ecologia e Sistemática de Peixes, São Luís, MA, Brasil
| | - L Tchaicka
- Universidade Federal do Maranhão - UFMA, Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, São Luís, MA, Brasil
- Universidade Estadual do Maranhão - UEMA, Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, São Luís, MA, Brasil
- Universidade Estadual do Maranhão - UEMA, Departamento de Biologia, São Luís, MA, Brasil
- Universidade Estadual do Maranhão - UEMA, Departamento de Biologia, Laboratório de Biodiversidade Molecular, São Luís, MA, Brasil
| |
Collapse
|
9
|
Moreira AMS, Freitas ETF, Reis MDP, Nogueira JM, Barbosa NPDU, Reis ALM, Pelli A, Camargo PRDS, Cardoso AV, de Paula RS, Jorge EC. Acute Exposure to Two Biocides Causes Morphological and Molecular Changes in the Gill Ciliary Epithelium of the Invasive Golden Mussel Limnoperna fortunei (Dunker, 1857). Animals (Basel) 2023; 13:3258. [PMID: 37893982 PMCID: PMC10603641 DOI: 10.3390/ani13203258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Limnoperna fortunei, the golden mussel, is a bivalve mollusk considered an invader in South America. This species is responsible for ecological and economic damages due to its voluminous fouling capability. Chemical biocides such as MXD-100™ and sodium dichloroisocyanurate (NaDCC) are often used to control L. fortunei infestations in hydraulic systems. Thus, we proposed to investigate the effects of different periods (24, 48 and 72 h) of exposure to MXD-100™ (0.56 mg L-1) and NaDCC (1.5 mg L-1) on the gills of L. fortunei through morphological and molecular analyses. NaDCC promoted progressive morphological changes during the analyzed periods and only an upregulation of SOD and HSP70 expression during the first 24 h of exposure. MXD-100™ led to severe morphological changes from the first period of exposure, in addition to an upregulation of SOD, CAT, HSP70 and CYP expression during the first 24 h. In contrast, MXD-100™ led to a downregulation of CAT transcription between 24 and 48 h. In static conditions, NaDCC causes lethal damage after 72 h of exposure, and that exposure needs to be continuous to achieve the control of the species. Meanwhile, the MXD-100™ treatment presented several effects during the first 24 h, showing acute toxicity in a shorter period of time.
Collapse
Affiliation(s)
- Amanda Maria Siqueira Moreira
- Laboratório de Biologia Oral e do Desenvolvimento, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (A.M.S.M.); (J.M.N.); (R.S.d.P.)
- Centro de Bioengenharia de Espécies Invasoras de Hidrelétricas (CBEIH), Cidade Nova, Belo Horizonte 31035-536, MG, Brazil; (E.T.F.F.); (M.d.P.R.); (N.P.d.U.B.); (A.P.); (P.R.d.S.C.); (A.V.C.)
| | - Erico Tadeu Fraga Freitas
- Centro de Bioengenharia de Espécies Invasoras de Hidrelétricas (CBEIH), Cidade Nova, Belo Horizonte 31035-536, MG, Brazil; (E.T.F.F.); (M.d.P.R.); (N.P.d.U.B.); (A.P.); (P.R.d.S.C.); (A.V.C.)
- Electron Optics Facility, Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Mariana de Paula Reis
- Centro de Bioengenharia de Espécies Invasoras de Hidrelétricas (CBEIH), Cidade Nova, Belo Horizonte 31035-536, MG, Brazil; (E.T.F.F.); (M.d.P.R.); (N.P.d.U.B.); (A.P.); (P.R.d.S.C.); (A.V.C.)
| | - Júlia Meireles Nogueira
- Laboratório de Biologia Oral e do Desenvolvimento, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (A.M.S.M.); (J.M.N.); (R.S.d.P.)
| | - Newton Pimentel de Ulhôa Barbosa
- Centro de Bioengenharia de Espécies Invasoras de Hidrelétricas (CBEIH), Cidade Nova, Belo Horizonte 31035-536, MG, Brazil; (E.T.F.F.); (M.d.P.R.); (N.P.d.U.B.); (A.P.); (P.R.d.S.C.); (A.V.C.)
| | - André Luiz Martins Reis
- Center for Population Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia;
| | - Afonso Pelli
- Centro de Bioengenharia de Espécies Invasoras de Hidrelétricas (CBEIH), Cidade Nova, Belo Horizonte 31035-536, MG, Brazil; (E.T.F.F.); (M.d.P.R.); (N.P.d.U.B.); (A.P.); (P.R.d.S.C.); (A.V.C.)
- Biotério Nico Nieser, Universidade Federal do Triângulo Mineiro, Uberaba 38025-100, MG, Brazil
| | - Paulo Ricardo da Silva Camargo
- Centro de Bioengenharia de Espécies Invasoras de Hidrelétricas (CBEIH), Cidade Nova, Belo Horizonte 31035-536, MG, Brazil; (E.T.F.F.); (M.d.P.R.); (N.P.d.U.B.); (A.P.); (P.R.d.S.C.); (A.V.C.)
- Biotério Nico Nieser, Universidade Federal do Triângulo Mineiro, Uberaba 38025-100, MG, Brazil
| | - Antonio Valadão Cardoso
- Centro de Bioengenharia de Espécies Invasoras de Hidrelétricas (CBEIH), Cidade Nova, Belo Horizonte 31035-536, MG, Brazil; (E.T.F.F.); (M.d.P.R.); (N.P.d.U.B.); (A.P.); (P.R.d.S.C.); (A.V.C.)
- Escola de Design, Universidade do Estado de Minas Gerais (UEMG), Belo Horizonte 30140-091, MG, Brazil
| | - Rayan Silva de Paula
- Laboratório de Biologia Oral e do Desenvolvimento, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (A.M.S.M.); (J.M.N.); (R.S.d.P.)
- Centro de Bioengenharia de Espécies Invasoras de Hidrelétricas (CBEIH), Cidade Nova, Belo Horizonte 31035-536, MG, Brazil; (E.T.F.F.); (M.d.P.R.); (N.P.d.U.B.); (A.P.); (P.R.d.S.C.); (A.V.C.)
| | - Erika Cristina Jorge
- Laboratório de Biologia Oral e do Desenvolvimento, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (A.M.S.M.); (J.M.N.); (R.S.d.P.)
| |
Collapse
|
10
|
Hilman R, Abot AR, Garcia FRM. Prioritization of absent quarantine pests in Brazil through the Analytical Hierarchy Process. BRAZ J BIOL 2023; 83:e274333. [PMID: 37820208 DOI: 10.1590/1519-6984.274333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/27/2023] [Indexed: 10/13/2023] Open
Abstract
Introducing an Absent Quarantine Pest (AQP) can cause severe economic, social and environmental impacts, generating food insecurity. The Analytical Hierarchy Process (AHP) method is an excellent tool for prioritizing APQs, allowing countries to better prepare against these threats. This study aimed to determine which AQPs should be prioritized in Brazil. For this, 20 AQPs were selected from the Brazilian official list. The selection was based on pests intercepted by Brazil between 2015 and 2018 and by countries of the European and Mediterranean Plant Protection Organization, in the international movement of plants. It can be concluded that out of the 20 AQPs studied, 17 are the priority and that the AHP method is effective for this purpose. Other countries from different continents can use this methodology to prioritize PQAs and thus create strategic plans to prevent entry into their territories and economic, social, and environmental impacts.
Collapse
Affiliation(s)
- R Hilman
- Ministério da Agricultura, Pecuária e Abastecimento, Superintendência Federal de Agricultura em Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - A R Abot
- Universidade Estadual de Mato Grosso do Sul, Aquidauana, MS, Brasil
| | - F R M Garcia
- Universidade Federal de Pelotas, Instituto de Biologia, Departamento de Ecologia, Zoologia e Genética, Pelotas, RS, Brasil
| |
Collapse
|
11
|
Wang S, Deng T, Zhang J, Li Y. Global economic costs of mammal invasions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159479. [PMID: 36265628 DOI: 10.1016/j.scitotenv.2022.159479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Invasive alien mammals cause huge adverse ecological impact on human society and natural ecosystems. Although studies have estimated economic costs of mammal invasions at regional scales, there is lacking the large-scale comprehensive assessment of currency costs for this taxon. Here, we estimated the economic cost of invasive alien mammals on a global scale using the most comprehensive global database compiling economic costs of invasive species (InvaCost). From 1960 to 2021, mammal invasions caused costs (summing damage costs and management costs) of US$ 462.49 billion to the global economy, while the total amount of robust costs reached US$ 52.49 billion. The majority of the total economic costs corresponded to damage costs (90.27 %), while only 7.43 % were related to management cost. Economic costs showed an increasing trend over time. The distribution of costs was uneven among taxonomic groups and regions, with the global total cost highly biasing toward to 5 species (European rabbit, Domestic cat, Black rat, Wild boar and Coypu), and North America reporting much higher costs (60.78 % of total economic costs) than other regions. The total costs were borne by agriculture, environment, authorities stakeholders and other sectors. Geographic and taxonomic biases suggested that total economic costs caused by invasive alien mammals were underestimated. Integrated research efforts are needed to fill in knowledge gaps in the economic costs generated by mammal invasions and to identify the drivers of the economic costs.
Collapse
Affiliation(s)
- Siqi Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing 100049, China
| | - Teng Deng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing 100049, China
| | - Jiaqi Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing 100049, China
| | - Yiming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing 100049, China; School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
12
|
de Carvalho-Junior L, Neves LM, Teixeira-Neves TP, Cardoso SJ. Long-term changes in benthic communities following the invasion by an alien octocoral in the Southwest Atlantic, Brazil. MARINE POLLUTION BULLETIN 2023; 186:114386. [PMID: 36462420 DOI: 10.1016/j.marpolbul.2022.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Invasive alien species are considered one of the main threats to marine biodiversity. We used a BACI design to investigate the changes in rocky reef benthic communities related to the invasion of the octocoral Latissimia ningalooensis in the Southwest Atlantic. Drastic changes in benthic community structure were restricted to the invaded site and associated with the growth of L. ningalooensis on turf algae. Conversely, the zoanthid Palythoa caribaeorum remained stable coverage along the 9-year study period, indicating a greater biotic resistance against the octocoral. Latissimia ningalooensis spread from large and well-established patches to new areas of the reef, increasing turf-octocoral interactions. This study warns of the great invasive potential of the octocoral, due to its high abundance, competitive and expansion ability. The decline in abundance of turf-forming algae following the emergence of L. ningalooensis threatens the structure and functioning of macroalgal-dominated rocky reefs.
Collapse
Affiliation(s)
- Lécio de Carvalho-Junior
- Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG 36036-900, Brazil; Laboratory of Plankton Ecology, Department of Zoology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG 36036-900, Brazil; Laboratory of Aquatic Ecology and Environmental Education, Department of Environmental Sciences, Campus Três Rios, Federal Rural University of Rio de Janeiro, Três Rios, RJ 25802-100, Brazil
| | - Leonardo M Neves
- Laboratory of Aquatic Ecology and Environmental Education, Department of Environmental Sciences, Campus Três Rios, Federal Rural University of Rio de Janeiro, Três Rios, RJ 25802-100, Brazil.
| | - Tatiana P Teixeira-Neves
- Laboratory of Aquatic Ecology and Environmental Education, Department of Environmental Sciences, Campus Três Rios, Federal Rural University of Rio de Janeiro, Três Rios, RJ 25802-100, Brazil
| | - Simone J Cardoso
- Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG 36036-900, Brazil; Laboratory of Plankton Ecology, Department of Zoology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG 36036-900, Brazil
| |
Collapse
|
13
|
Flora introduced and naturalized in Central America. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Fachinello MC, Romero JHC, Chiba de Castro WA. Defining invasive species and demonstrating impacts of biological invasions: a scientometric analysis of studies on invasive alien plants in Brazil over the past 20 years. NEOBIOTA 2022. [DOI: 10.3897/neobiota.76.85881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite biological invasions being widely recognised as an important driver of environmental change, lack of consensus regarding the definition of invasive alien species (IAS) and vagueness around the demonstration of their impacts limits knowledge and research in this field. In this study, a scientometric approach was used to analyse academic documents published between 2002 and 2021 in three databases with reference to invasive alien plants in Brazil. Despite the growing body of scientific literature in the area, only 10% of the publications provided some definition of invasive species. Of the 398 publications analysed, 23.6% found some type of damage caused by the invader and, of these, only 5% addressed economic or social damage. Only 17% of the publications proposed a method for controlling and/or mitigating biological invasions. The absence of clear terminology and the lack of focus on impacts limits understanding of IAS of plants in Brazil. Based on the present findings, future studies on IAS of plants should move towards a consensus on the definition of biological invasion, as well as understand the impact caused by these species. In addition, it is recommended that further scientometric studies should guide future efforts to support objective measures for management and decision-making.
Collapse
|
15
|
Macêdo RL, Franco ACS, Kozlowsky-Suzuki B, Mammola S, Dalu T, Rocha O. The global social-economic dimension of biological invasions by plankton: Grossly underestimated costs but a rising concern for water quality benefits? WATER RESEARCH 2022; 222:118918. [PMID: 35932706 DOI: 10.1016/j.watres.2022.118918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Planktonic invasive species cause adverse effects on aquatic biodiversity and ecosystem services. However, these impacts are often underestimated because of unresolved taxonomic issues and limited biogeographic knowledge. Thus, it is pivotal to start a rigorous quantification of impacts undertaken by planktonic invasive species on global economies. We used the InvaCost database, the most up-to-date database of economic cost estimates of biological invasions worldwide, to produce the first critical assessment of the economic dimension of biological invasions caused by planktonic taxa. We found that in period spanning from 1960 to 2021, the cumulative global cost of plankton invasions was US$ 5.8 billion for permanent plankton (holoplankton) of which viruses encompassed nearly 93%. Apart from viruses, we found more costs related to zooplankton (US$ 297 million) than to the other groups summed, including myco- (US$ 73 million), phyto- (43 million), and bacterioplankton (US$ 0.7 million). Strikingly, harmful and potentially toxic cyanobacteria and dinoflagellates are completely absent from the database. Furthermore, the data base showed a decrease in costs over time, which is probably an artifact as a sharp rise of novel planktonic alien species has gained international attention. Also, assessments of the costs of larval meroplanktonic stages of littoral and benthic invasive invertebrates are lacking whereas cumulative global cost of their adults stages is high up to US$ 98 billion billion and increasing. Considering the challenges and perspectives of increasing but unnoticed or neglected impacts by plankton invasions, the assessment of their ecological and economic impacts should be of high priority.
Collapse
Affiliation(s)
- Rafael L Macêdo
- Graduate Program in Ecology and Natural Resources, and Department of Ecology and Evolutionary Biology, Federal University of São Carlos - UFSCar, São Carlos, Brazil; Graduate Program in Conservation and Ecotourism, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil; Neotropical Limnology Group (NEL), Federal University of Rio de Janeiro State, Av. Pasteur, 458, 22290-240, Rio de Janeiro, RJ, Brasil.
| | - Ana Clara S Franco
- Graduate Course in Neotropical Biodiversity, Federal University of Rio de Janeiro State, 458, 22290-240, Rio de Janeiro, Brazil
| | - Betina Kozlowsky-Suzuki
- Graduate Program in Conservation and Ecotourism, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil; Neotropical Limnology Group (NEL), Federal University of Rio de Janeiro State, Av. Pasteur, 458, 22290-240, Rio de Janeiro, RJ, Brasil; Graduate Course in Neotropical Biodiversity, Federal University of Rio de Janeiro State, 458, 22290-240, Rio de Janeiro, Brazil
| | - Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, Finland; Molecular Ecology Group (MEG), Water Research Institute, National Research Council of Italy (CNR-IRSA), 28922, Verbania Pallanza, Italy
| | - Tatenda Dalu
- School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, 1200, South Africa; Wissenshaftskolleg zu Berlin Institute for Advanced Study, Berlin, 14193, Germany
| | - Odete Rocha
- Graduate Program in Ecology and Natural Resources, and Department of Ecology and Evolutionary Biology, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| |
Collapse
|
16
|
Vaissière AC, Courtois P, Courchamp F, Kourantidou M, Diagne C, Essl F, Kirichenko N, Welsh M, Salles JM. The nature of economic costs of biological invasions. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02837-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
How Will the Distributions of Native and Invasive Species Be Affected by Climate Change? Insights from Giant South American Land Snails. DIVERSITY 2022. [DOI: 10.3390/d14060467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change and invasive species are critical factors affecting native land snail diversity. In South America, the introduced Giant African Snail (Lissachatina fulica) has spread significantly in recent decades into the habitat of the threatened native giant snails of the genus Megalobulimus. We applied species distribution modeling (SDM), using the maximum entropy method (Maxent) and environmental niche analysis, to understand the ecological relationships between these species in a climate change scenario. We compiled a dataset of occurrences of L. fulica and 10 Megalobulimus species in South America and predicted the distribution of the species in current and future scenarios (2040–2060). We found that L. fulica has a broader environmental niche and potential distribution than the South American Megalobulimus species. The distribution of six Megalobulimus species will have their suitable areas decreased, whereas the distribution of the invasive species L. fulica will not change significantly in the near future. A correlation between the spread of L. fulica and the decline of native Megalobulimus species in South America was found due to habitat alteration from climate change, but this relationship does not seem to be related to a robust competitive interaction between the invasive and native species.
Collapse
|
18
|
Mota JDS, Barbosa LR, Marchioro CA. Suitable areas for invasive insect pests in Brazil and the potential impacts for eucalyptus forestry. PEST MANAGEMENT SCIENCE 2022; 78:2596-2606. [PMID: 35338563 DOI: 10.1002/ps.6891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/06/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Brazil is among the world's largest producers of eucalyptus and the damage caused by native and invasive insect pests is one of the main factors affecting eucalyptus yield. The recent history of biological invasions of eucalyptus pests in Brazil prompts demand for phytosanitary measures to prevent new invasions. This study used ecological niche models to estimate suitable areas for nine eucalyptus pests. This information was used to assess the potential ports of entry, generate invasion risk maps considering the likelihood of introducing invasive species, and estimate the eucalyptus producing municipalities and areas within the species' suitable range. RESULTS A large distribution range was predicted for Eucalyptolyma maideni (Hempitera: Aphalaridae), Orgya postica (Lepidoptera: Erebidae), Sinoxylon anale (Coleoptera: Bostrichidae), and Trachymela sloanei (Coleoptera: Chrysomelidae) in Brazil, while a comparatively smaller distribution was predicted for Ophelimus maskelli (Hymenoptera: Eulophidae), Mnesampela privata (Lepidoptera: Geometridae), Paropsis atomaria (Coleoptera: Chrysomelidae), Paropsisterna beata, and P. cloelia (Coleoptera: Chrysomelidae). High-risk areas of invasion near airports and seaports were predicted mainly in southern, southeastern, and northeastern Brazil. A large proportion of the municipalities (24.4% to 93.7%) and areas with eucalyptus plantations (31.9% to 98.3%) are within the climatically suitable areas estimated for the pests, especially in southern and southeastern regions, which comprises 61.5% of the Brazilian eucalyptus production. CONCLUSION The results indicate that eucalyptus forestry may be significantly impacted by biological invasion. The findings provided by our study can assist decision-makers in developing phytosanitary measures to prevent new invasions of forest pests in Brazil. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Juliana Dos Santos Mota
- Graduate Program in Natural and Agricultural Ecosystems, Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Santa Catarina, Brazil
| | | | - Cesar Augusto Marchioro
- Graduate Program in Natural and Agricultural Ecosystems, Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Santa Catarina, Brazil
| |
Collapse
|
19
|
Bang A, Cuthbert RN, Haubrock PJ, Fernandez RD, Moodley D, Diagne C, Turbelin AJ, Renault D, Dalu T, Courchamp F. Massive economic costs of biological invasions despite widespread knowledge gaps: a dual setback for India. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02780-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractBiological invasions are one of the top drivers of the ongoing biodiversity crisis. An underestimated consequence of invasions is the enormity of their economic impacts. Knowledge gaps regarding economic costs produced by invasive alien species (IAS) are pervasive, particularly for emerging economies such as India—the fastest growing economy worldwide. To investigate, highlight and bridge this gap, we synthesised data on the economic costs of IAS in India. Specifically, we examine how IAS costs are distributed spatially, environmentally, sectorally, taxonomically, temporally, and across introduction pathways; and discuss how Indian IAS costs vary with socioeconomic indicators. We found that IAS have cost the Indian economy between at least US$ 127.3 billion to 182.6 billion (Indian Rupees ₹ 8.3 trillion to 11.9 trillion) over 1960–2020, and these costs have increased with time. Despite these massive recorded costs, most were not assigned to specific regions, environments, sectors, cost types and causal IAS, and these knowledge gaps are more pronounced in India than in the rest of the world. When costs were specifically assigned, maximum costs were incurred in West, South and North India, by invasive alien insects in semi-aquatic ecosystems; they were incurred mainly by the public and social welfare sector, and were associated with damages and losses rather than management expenses. Our findings indicate that the reported economic costs grossly underestimate the actual costs, especially considering the expected costs given India’s population size, gross domestic product and high numbers of IAS without reported costs. This cost analysis improves our knowledge of the negative economic impacts of biological invasions in India and the burden they can represent for its development. We hope this study motivates policymakers to address socio-ecological issues in India and launch a national biological invasion research programme, especially since economic growth will be accompanied by greater impacts of global change.
Collapse
|
20
|
Heringer G, Del Bianco Faria L, Villa PM, Araújo AU, Botan ALM, Zenni RD. Urbanization affects the richness of invasive alien trees but has limited influence on species composition. Urban Ecosyst 2021. [DOI: 10.1007/s11252-021-01189-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Duboscq-Carra VG, Fernandez RD, Haubrock PJ, Dimarco RD, Angulo E, Ballesteros-Mejia L, Diagne C, Courchamp F, Nuñez MA. Economic impact of invasive alien species in Argentina: a first national synthesis. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.63208] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Invasive alien species (IAS) affect natural ecosystems and services fundamental to human well-being, human health and economies. However, the economic costs associated with IAS have been less studied than other impacts. This information can be particularly important for developing countries such as Argentina, where monetary resources for invasion management are scarce and economic costs are more impactful. The present study provides the first analysis of the economic cost of IAS in Argentina at the national level, using the InvaCost database (expanded with new data sources in Spanish), the first global compilation of the reported economic costs of invasions. We analyzed the temporal development of invasions costs, distinguishing costs according to the method reliability (i.e. reproducibility of the estimation methodology) and describing the economic costs of invasions by invaded environment, cost type, activity sector affected and taxonomic group of IAS. The total economic cost of IAS in Argentina between 1995 and 2019 was estimated at US$ 6,908 million. All costs were incurred and 93% were highly reliable. The recorded costs were mainly related to terrestrial environments and the agricultural sector, with lack of costs in other sectors, making it difficult to discuss the actual distribution of invasion costs in Argentina. Nevertheless, the reported costs of IAS in this country are very high and yet likely much underestimated due to important data gaps and biases in the literature. Considering that Argentina has an underdeveloped economy, costs associated with biological invasions should be taken into consideration for preventing invasions, and to achieve a more effective use of available resources.
Collapse
|
22
|
Zenni RD, Essl F, García-Berthou E, McDermott SM. The economic costs of biological invasions around the world. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.69971] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Not applicable
Collapse
|
23
|
Ballesteros-Mejia L, Angulo E, Diagne C, Cooke B, Nuñez MA, Courchamp F. Economic costs of biological invasions in Ecuador: the importance of the Galapagos Islands. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.59116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Biological invasions, as a result of human intervention through trade and mobility, are the second biggest cause of biodiversity loss. The impacts of invasive alien species (IAS) on the environment are well known, however, economic impacts are poorly estimated, especially in mega-diverse countries where both economic and ecological consequences of these effects can be catastrophic. Ecuador, one of the smallest mega-diverse countries, lacks a comprehensive description of the economic costs of IAS within its territory. Here, using "InvaCost", a public database that compiles all recorded monetary costs associated with IAS from English and Non-English sources, we investigated the economic costs of biological invasions. We found that between 1983 and 2017, the reported costs associated with biological invasions ranged between US$86.17 million (when considering only the most robust data) and US$626 million (when including all cost data) belonging to 37 species and 27 genera. Furthermore, 99% of the recorded cost entries were from the Galapagos Islands. From only robust data, the costliest identified taxonomic group was feral goats (Capra hircus; US$20 million), followed by Aedes mosquitoes (US$2.14 million) while organisms like plant species from the genus Rubus, a parasitic fly (Philornis downsi), black rats (Rattus rattus) and terrestrial gastropods (Achatina fulica) represented less than US$2 million each. Costs of "mixed-taxa" (i.e. plants and animals) represented the highest (61% of total robust costs; US$52.44 million). The most impacted activity sector was the national park authorities, which spent about US$84 million. Results from robust data also revealed that management expenditures were the major type of costs recorded in the Galapagos Islands; however, costs reported for medical losses related to Aedes mosquitoes causing dengue fever in mainland Ecuador would have ranked first if more detailed information had allowed us to categorize them as robust data. Over 70% of the IAS reported for Ecuador did not have reported costs. These results suggest that costs reported here are a massive underestimate of the actual economic toll of invasions in the country.
Collapse
|
24
|
Cuthbert RN, Bartlett AC, Turbelin AJ, Haubrock PJ, Diagne C, Pattison Z, Courchamp F, Catford JA. Economic costs of biological invasions in the United Kingdom. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.59743] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although the high costs of invasion are frequently cited and are a key motivation for environmental management and policy, synthesised data on invasion costs are scarce. Here, we quantify and examine the monetary costs of biological invasions in the United Kingdom (UK) using a global synthesis of reported invasion costs. Invasive alien species have cost the UK economy between US$6.9 billion and $17.6 billion (£5.4 – £13.7 billion) in reported losses and expenses since 1976. Most costs were reported for the entire UK or Great Britain (97%); country-scale cost reporting for the UK's four constituent countries was scarce. Reports of animal invasions were the costliest ($4.7 billion), then plant ($1.3 billion) and fungal ($206.7 million) invasions. Reported damage costs (i.e. excluding management costs) were higher in terrestrial ($4.8 billion) than aquatic or semi-aquatic environments ($29.8 million), and primarily impacted agriculture ($4.2 billion). Invaders with earlier introduction years accrued significantly higher total invasion costs. Invasion costs have been increasing rapidly since 1976, and have cost the UK economy $157.1 million (£122.1 million) per annum, on average. Published information on specific economic costs included only 42 of 520 invaders reported in the UK and was generally available only for the most intensively studied taxa, with just four species contributing 90% of species-specific costs. Given that many of the invasive species lacking cost data are actively managed and have well-recognised impacts, this suggests that cost information is incomplete and that totals presented here are vast underestimates owing to knowledge gaps. Financial expenditure on managing invasions is a fraction (37%) of the costs incurred through damage from invaders; greater investments in UK invasive species research and management are, therefore, urgently required.
Collapse
|
25
|
Heringer G, Angulo E, Ballesteros-Mejia L, Capinha C, Courchamp F, Diagne C, Duboscq-Carra VG, Nuñez MA, Zenni RD. The economic costs of biological invasions in Central and South America: a first regional assessment. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.59193] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive alien species are responsible for a high economic impact on many sectors worldwide. Nevertheless, there is a scarcity of studies assessing these impacts in Central and South America. Investigating costs of invasions is important to motivate and guide policy responses by increasing stakeholders’ awareness and identifying action priorities. Here, we used the InvaCost database to investigate (i) the geographical pattern of biological invasion costs across the region; (ii) the monetary expenditure across taxa and impacted sectors; and (iii) the taxa responsible for more than 50% of the costs (hyper-costly taxa) per impacted sector and type of costs. The total of reliable and observed costs reported for biological invasions in Central and South America was USD 102.5 billion between 1975 and 2020, but about 90% of the total costs were reported for only three countries (Brazil, Argentina and Colombia). Costs per species were associated with geographical regions (i.e., South America, Central America and Islands) and with the area of the countries in km2. Most of the expenses were associated with damage costs (97.8%), whereas multiple sectors (77.4%), agriculture (15%) and public and social welfare (4.2%) were the most impacted sectors. Aedes spp. was the hyper-costly taxon for the terrestrial environment (costs of USD 25 billion) and water hyacinth (Eichhornia crassipes) was the hyper-costly taxon for the aquatic environment (USD 179.9 million). Six taxa were classified as hyper-costly for at least one impacted sector and two taxa for at least one type of cost. In conclusion, invasive alien species caused billions of dollars of economic burden in Central and South America, mainly in large countries of South America. Costs caused by invasive alien species were unevenly distributed across countries, impacted sectors, types of costs and taxa (hyper-costly taxa). These results suggest that impacted sectors should drive efforts to manage the species that are draining financial sources.
Collapse
|
26
|
Haubrock PJ, Cuthbert RN, Sundermann A, Diagne C, Golivets M, Courchamp F. Economic costs of invasive species in Germany. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.59502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Invasive alien species are a well-known and pervasive threat to global biodiversity and human well-being. Despite substantial impacts of invasive alien species, quantitative syntheses of monetary costs incurred from invasions in national economies are often missing. As a consequence, adequate resource allocation for management responses to invasions has been inhibited, because cost-benefit analysis of management actions cannot be derived. To determine the economic cost of invasions in Germany, a Central European country with the 4th largest GDP in the world, we analysed published data collected from the first global assessment of economic costs of invasive alien species. Overall, economic costs were estimated at US$ 9.8 billion between 1960 and 2020, including US$ 8.9 billion in potential costs. The potential costs were mostly linked to extrapolated costs of the American bullfrog Lithobates catesbeianus, the black cherry Prunus serotina and two mammals: the muskrat Ondatra zibethicus and the American mink Neovison vison. Observed costs were driven by a broad range of taxa and mostly associated with control-related spending and resource damages or losses. We identified a considerable increase in costs relative to previous estimates and through time. Importantly, of the 2,249 alien and 181 invasive species reported in Germany, only 28 species had recorded economic costs. Therefore, total quantifications of invasive species costs here should be seen as very conservative. Our findings highlight a distinct lack of information in the openly-accessible literature and governmental sources on invasion costs at the national level, masking the highly-probable existence of much greater costs of invasions in Germany. In addition, given that invasion rates are increasing, economic costs are expected to further increase. The evaluation and reporting of economic costs need to be improved in order to deliver a basis for effective mitigation and management of invasions on national and international economies.
Collapse
|