1
|
Royzenblat S, Kulacic J, Friedrich M. Evidence of ancestral nocturnality, locomotor clock regression, and cave zone-adjusted sleep duration modes in a cave beetle. SUBTERRANEAN BIOLOGY 2023. [DOI: 10.3897/subtbiol.45.100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The small carrion beetle Ptomaphagus hirtus is an abundant inhabitant of the exceptionally biodiverse Mammoth Cave system. Previous studies revealed negative phototaxis and the expression of biological clock genes in this microphthalmic cave beetle. Here we present results from probing P. hirtus for the entrainment of locomotor rhythms using the TriKinetics activity monitor setup. Although curtailed by low adjustment frequency of animals to the test environment, the data obtained from successfully monitoring two animals in constant darkness (DD) and six animals exposed to 12 hour light-dark cycles (LD) revealed a strong effect of light on locomotor activity in P. hirtus. In LD, activity was prevalent during the artificial night phases while close to absent during the presumptive day phases, suggesting conserved nocturnality. Upon transitioning LD animals to constant darkness, none displayed detectable evidence of free-running activity rhythms, suggesting complete regression of the central circadian clock. Equally notable, overall locomotor activity of the two DD-monitored animals was about three-fold lower compared to LD animals due to longer rest durations in the former. We, therefore, propose the existence of cave zone-specific energy expenditure modes that are mediated through light schedule responsive modification of sleep duration in P. hirtus.
Collapse
|
2
|
Abstract
The Mammoth Cave System in the Interior Low Plateau karst region in central Kentucky, USA is a global hotspot of cave-limited biodiversity, particularly terrestrial species. We searched the literature, museum accessions, and database records to compile an updated list of troglobiotic and stygobiotic species for the Mammoth Cave System and compare our list with previously published checklists. Our list of cave-limited fauna totals 49 species, with 32 troglobionts and 17 stygobionts. Seven species are endemic to the Mammoth Cave System and other small caves in Mammoth Cave National Park. The Mammoth Cave System is the type locality for 33 cave-limited species. The exceptional diversity at Mammoth Cave is likely related to several factors, such as the high dispersal potential of cave fauna associated with expansive karst exposures, high surface productivity, and a long history of exploration and study. Nearly 80% of the cave-limited fauna is of conservation concern, many of which are at an elevated risk of extinction because of small ranges, few occurrences, and several potential threats.
Collapse
|
3
|
Langille BL, Hyde J, Saint KM, Bradford TM, Stringer DN, Tierney SM, Humphreys WF, Austin AD, Cooper SJB. Evidence for speciation underground in diving beetles (Dytiscidae) from a subterranean archipelago. Evolution 2020; 75:166-175. [PMID: 33219700 DOI: 10.1111/evo.14135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Most subterranean animals are assumed to have evolved from surface ancestors following colonization of a cave system; however, very few studies have raised the possibility of "subterranean speciation" in underground habitats (i.e., obligate cave-dwelling organisms [troglobionts] descended from troglobiotic ancestors). Numerous endemic subterranean diving beetle species from spatially discrete calcrete aquifers in Western Australia (stygobionts) have evolved independently from surface ancestors; however, several cases of sympatric sister species raise the possibility of subterranean speciation. We tested this hypothesis using vision (phototransduction) genes that are evolving under neutral processes in subterranean species and purifying selection in surface species. Using sequence data from 32 subterranean and five surface species in the genus Paroster (Dytiscidae), we identified deleterious mutations in long wavelength opsin (lwop), arrestin 1 (arr1), and arrestin 2 (arr2) shared by a sympatric sister-species triplet, arr1 shared by a sympatric sister-species pair, and lwop and arr2 shared among closely related species in adjacent calcrete aquifers. In all cases, a common ancestor possessed the function-altering mutations, implying they were already adapted to aphotic environments. Our study represents one of the first confirmed cases of subterranean speciation in cave insects. The assessment of genes undergoing pseudogenization provides a novel way of testing modes of speciation and the history of diversification in blind cave animals.
Collapse
Affiliation(s)
- Barbara L Langille
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Josephine Hyde
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, 06511
| | - Kathleen M Saint
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Tessa M Bradford
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, 5000, Australia
| | - Danielle N Stringer
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Simon M Tierney
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - William F Humphreys
- Collections and Research, Western Australian Museum, 49 Kew Street, Welshpool, Western Australia, 6106, Australia.,School of Animal Biology, University of Western Australia, Nedlands, Western Australia, 6009, Australia
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, 5000, Australia
| | - Steven J B Cooper
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
4
|
Gladstone NS, Niemiller ML, Pieper EB, Dooley K, McKinney ML. Morphometrics and phylogeography of the cave-obligate land snail Helicodiscus barri (Gastropoda, Stylommatophora, Helicodiscidae). SUBTERRANEAN BIOLOGY 2019. [DOI: 10.3897/subtbiol.30.35321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Molecular studies have recently led to the detection of many cryptic species complexes within morphologically ambiguous species formerly undescribed by the scientific community. Organisms such as land snails are at a particularly higher risk of species misidentification and misinterpretation, in that gastropod systematics are based almost entirely on external shell morphology. Subterranean ecosystems are associated with especially high degrees of cryptic speciation, largely owing to the abiotic similarities of these systems. In this study, we attempt to diagnose the potential cryptic diversity in the troglobitic land snail Helicodiscusbarri. Land snails are generally associated with having low vagility, and as such this species’ broad, mosaic distribution indicates the misdiagnosis of this organism as a single species. We analyze both mitochondrial (16S, CO1) and nuclear (28S, H3) genetic data for 23 populations. Phylogeny for H.barri was reconstructed using both maximum-likelihood and Bayesian approaches to assess relationships among populations, and two species delimitation methods (mPTP and ABGD) were used to detect the presence of unique molecular operational taxonomic units (MOTUs). Species delimitation results revealed seven and sixteen MOTUs respectively, suggesting the presence of several cryptic lineages within H.barri. To assess how external shell morphology corresponds with patterns of genetic and environmental variation, two morphometric approaches were used incorporating 115 shells from 31 populations. Both morphometric approaches reveal a significant environmental influence on shell morphology, and one approach showed the significance of MOTU groups. We discuss the delimitation and morphometric results and additionally provide discussion on the taxonomic and conservation implications of this study.
Collapse
|