1
|
Zorkóczy OK, Wagenhoffer Z, Lehotzky P, Pádár Z, Zenke P. Mitochondrial Control Region Database of Hungarian Fallow Deer ( Dama dama) Populations for Forensic Use. Animals (Basel) 2024; 14:1911. [PMID: 38998023 PMCID: PMC11240637 DOI: 10.3390/ani14131911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
The evidential value of an mtDNA match between biological remains and their potential donor is determined by the random match probability of the haplotype. This probability is based on the haplotype's population frequency estimate. Consequently, implementing a population study representative of the population relevant to a forensic case is vital to correctly evaluating the evidence. The emerging number of poaching cases and the limited availability of such data emphasizes the need for an improved fallow deer mtDNA population databank for forensic purposes, including targeting the entire mitochondrial control region. By sequencing a 945-base-pair-long segment of the mitochondrial control region in 138 animals from five populations in Hungary, we found four different haplotypes, including one which had not yet been described. Our results, supplemented with data already available from previous research, do not support the possibility of determining the population of origin, although some patterns of geographical separation can be distinguished. Estimates of molecular diversity indicate similarly low mtDNA diversity (Hd = 0.565 and π = 0.002) compared to data from other countries. The calculated random match probability of 0.547 shows a high probability of coincidence and, therefore, a limited capacity for exclusion. Our results indicate that despite the overall low genetic diversity of mtDNA within the Hungarian fallow deer samples, a pattern of differentiation among the regions is present, which can have relevance from a forensic point of view.
Collapse
Affiliation(s)
- Orsolya K. Zorkóczy
- Department of Animal Breeding and Genetics, Institute for Animal Breeding, Nutrition and Laboratory Animal Science, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (O.K.Z.); (Z.W.)
| | - Zsombor Wagenhoffer
- Department of Animal Breeding and Genetics, Institute for Animal Breeding, Nutrition and Laboratory Animal Science, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (O.K.Z.); (Z.W.)
| | - Pál Lehotzky
- Hungarian Hunters’ National Chamber, H-1027 Budapest, Hungary;
| | - Zsolt Pádár
- Department of Criminal Sciences, Ferenc Deák Faculty of Law and Political Sciences, University of Győr, H-9026 Győr, Hungary;
| | - Petra Zenke
- Department of Animal Breeding and Genetics, Institute for Animal Breeding, Nutrition and Laboratory Animal Science, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (O.K.Z.); (Z.W.)
| |
Collapse
|
2
|
Perini F, Cardinali I, Ceccobelli S, Gruppetta A, José CS, Cosenza M, Musso N, Martìnez A, Abushady AM, Monteagudo LV, Liotta L, Lancioni H, Attard G, Lasagna E. Phylogeographic and population genetic structure of hound-like native dogs of the Mediterranean Basin. Res Vet Sci 2023; 155:103-114. [PMID: 36669378 DOI: 10.1016/j.rvsc.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The dog was probably the first domesticated animal. Despite extensive archaeological and genetic investigations, the origin and the evolution of the extant dogs are still being debated. Dog breeds that have over time been selected for hunting share common ancestral traits. This study represents the first comprehensive attempt to survey at the genomic and mitochondrial level eight hound-like dogs breeds indigenous to the Mediterranean Basin to determine if they share common ancient origins. Results from the microsatellite analysis indicate that all the dog populations have a low inbreeding value.The Kelb tal-Fenek has a high divergence from the current Egyptian street population, however there is not enough evidence from this study to exclude completely the potential of an ancient common relationship. Overall, the mitochondrial results indicate high frequencies of haplogroups A and B and a low representation of haplogroup C, while only one Egyptian dog could be assigned to haplogroup D. Results reveal identities and shared clades, suggesting the conservation of ancient European mitotypes in the Mediterranean hound-like breeds, especially in the Egyptian population. Although none of the dog populations/breeds participating in this study indicate to be direct descendants of the Egyptian dogs, they still have a very close morphologically resemblance to those iconic Egyptian dogs often depicted in ancient art forms and share some genetic links with the current Egyptian population. Further research is required with other markers such us complete mitogenomes and SNP panels to confirm the complex history of the Mediterranean dogs involved in this study.
Collapse
Affiliation(s)
- Francesco Perini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto, 06123 Perugia, Italy
| | - Simone Ceccobelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy.
| | - Anthony Gruppetta
- St. Simon Veterinary Practice, 53, Grognet Street MST 3611, Mosta, Northern Region, Malta
| | - Carlos San José
- Biodonostia Health Research Institute, Paseo Dr. Begiristain, s/n, 20014 San Sebastián, Gipuzkoa, Spain
| | - Mario Cosenza
- Laboratorio di Genetica Forense Veterinaria, Unirelab srl, Milan, Settimo Milanese, Italy
| | - Nicolò Musso
- Molecular Analysis and Biology Laboratory Biogene, Via Giacomo Leopardi 50, 95127 Catania, Italy
| | - Amparo Martìnez
- Department of Genetics, University of Córdoba, Ctra. Madrid-Córdoba km 396, 14071 Córdoba, Spain
| | - Asmaa M Abushady
- Biotechnology School, Nile University, first 6th of October, Giza Governorate, Egypt; Department of Genetics, Faculty of Agriculture, Ain Shams University, Shubra Al Kheimah, Awal Shubra Al Kheimah, Cairo, Egypt
| | - Luis V Monteagudo
- Department of Anatomy, Embryology and Animal Genetics, Faculty of Veterinary Sciences, University of Zaragoza, Calle de Pedro Cerbuna, 12, 50009 Zaragoza, Spain; Agrifood Institute of Aragon (IA2), University of Zaragoza-CITA, Calle de Pedro Cerbuna, 12, 50009 Zaragoza, Spain
| | - Luigi Liotta
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto, 06123 Perugia, Italy
| | - George Attard
- Department of Rural Sciences and Food Systems, University of Malta, 2080 Msida, Malta
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| |
Collapse
|
3
|
Mitochondrial DNA alterations in the domestic dog (Canis lupus familiaris) and their association with development of diseases: a review. Mitochondrion 2022; 63:72-84. [DOI: 10.1016/j.mito.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/06/2022]
|
4
|
Brown banded bamboo shark (Chiloscyllium punctatum) shows high genetic diversity and differentiation in Malaysian waters. Sci Rep 2021; 11:14874. [PMID: 34290296 PMCID: PMC8295251 DOI: 10.1038/s41598-021-94257-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
The demersal brown banded bamboo shark Chiloscyllium punctatum is a major component of sharks landed in Malaysia. However, little is known about their population structure and the effect of high fishing pressure on these weak swimming sharks. Both mitochondrial DNA control region (1072 bp) and NADH dehydrogenase subunit 2 (1044 bp) were used to elucidate the genetic structure and connectivity of C. punctatum among five major areas within the Sundaland region. Our findings revealed (i) strong genetic structure with little present day mixing between the major areas, (ii) high intra-population genetic diversity with unique haplotypes, (iii) significant correlation between genetic differentiation and geographical distance coupled with detectable presence of fine scale geographical barriers (i.e. the South China Sea), (iv) historical directional gene flow from the east coast of Peninsular Malaysia towards the west coast and Borneo, and (v) no detectable genetic differentiation along the coastline of east Peninsular Malaysia. Genetic patterns inferred from the mitochondrial DNA loci were consistent with the strong coastal shelf association in this species, the presence of contemporary barriers shaped by benthic features, and limited current-driven egg dispersal. Fine scale population structure of C. punctatum highlights the need to improve genetic understanding for fishery management and conservation of other small-sized sharks.
Collapse
|
5
|
Heß SA, Trapani S, Boronat MDM, Theunissen GMG, Rolf B, Jäger R. Ribosomal DNA as target for the assessment of DNA degradation of human and canine DNA. Leg Med (Tokyo) 2020; 48:101819. [PMID: 33248354 DOI: 10.1016/j.legalmed.2020.101819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022]
Abstract
The assessment of DNA amount and DNA integrity can support forensic DNA analysis, in particular of problematic traces such as single telogen hairs where STR typing success is often hampered by low amounts and strong degradation of nuclear DNA. Common strategies consist of quantitative polymerase chain reaction (qPCR)-based analysis of the abundance of a short versus a long nuclear amplicon, the latter prone to DNA degradation. To increase sensitivity, commercial qPCR solutions rest on amplification of multi-copy DNA sequences. Here we show that ribosomal DNA (rDNA) sequences are well suited for the same purpose. Because rDNA sequences are present in high copy number in most eukaryotic species, qPCR strategies can easily be adapted to non-human species. In this paper, we establish qPCR-based assays for human or dog DNA, respectively, which allow for sensitive analysis of DNA amounts and DNA degradation. We show that the human system can be applied to DNA of single telogen hairs, where STR typing success correlates with measured amounts and integrity of the DNA. By adapting the system to dog rDNA sequences we found that single telogen dog hairs often displayed less DNA degradation than human telogen hairs, in most cases allowing for successful STR typing. Thus, qPCR-based analysis of rDNA represents a cost-effective, highly sensitive strategy to assess DNA amount and integrity that can be adapted to hairs or other traces from various animal species.
Collapse
Affiliation(s)
- Sarah Aurora Heß
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig Str. 20, 53359 Rheinbach, Germany; Institute of Safety and Security Research, Hochschule Bonn-Rhein-Sieg, University of Applied Sciences, Grantham Allee 20, 53757 Sankt Augustin, Germany
| | - Salvatore Trapani
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig Str. 20, 53359 Rheinbach, Germany; Università degli Studi di Palermo, University of Palermo, 90133 Palermo, PA, Italy
| | - Maria Del Mar Boronat
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig Str. 20, 53359 Rheinbach, Germany
| | - Glenn M G Theunissen
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig Str. 20, 53359 Rheinbach, Germany; Institute of Safety and Security Research, Hochschule Bonn-Rhein-Sieg, University of Applied Sciences, Grantham Allee 20, 53757 Sankt Augustin, Germany
| | - Burkhard Rolf
- Eurofins Medigenomix Forensik GmbH, Anzinger Str. 7a, 85560 Ebersberg, Germany
| | - Richard Jäger
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig Str. 20, 53359 Rheinbach, Germany; Institute of Safety and Security Research, Hochschule Bonn-Rhein-Sieg, University of Applied Sciences, Grantham Allee 20, 53757 Sankt Augustin, Germany; Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, Grantham Allee 20, 53757, Sankt Augustin, Germany.
| |
Collapse
|
6
|
Song JJ, Wang WZ, Otecko NO, Peng MS, Zhang YP. Reconciling the conflicts between mitochondrial DNA haplogroup trees of Canis lupus. Forensic Sci Int Genet 2016; 23:83-85. [PMID: 27042801 DOI: 10.1016/j.fsigen.2016.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 11/18/2022]
Affiliation(s)
- Jiao-Jiao Song
- Institute of Health Sciences, Anhui University, 111 Jiulong Lu, 230601 Hefei, China; State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, and Germplasm Bank of Wild Species, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, 650223 Kunming, China
| | - Wen-Zhi Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, and Germplasm Bank of Wild Species, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, 650223 Kunming, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, and Germplasm Bank of Wild Species, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, 650223 Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, 19 Qingsong Lu, 650204 Kunming, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, and Germplasm Bank of Wild Species, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, 650223 Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, 19 Qingsong Lu, 650204 Kunming, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, and Germplasm Bank of Wild Species, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, 650223 Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, 19 Qingsong Lu, 650204 Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, 2 Cuihu Beilu, 650091 Kunming, China.
| |
Collapse
|
7
|
Zielińska S, Głażewska I. A pedigree-based analysis of mitochondrial DNA diversity in a dog population on the example of German Hovawarts. Arch Anim Breed 2015. [DOI: 10.5194/aab-58-335-2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. The purpose of the article is to illustrate the use of pedigree analysis to evaluate mtDNA diversity in a selected population of pedigree dogs, to describe the paths of mtDNA inheritance and to estimate the spread of potential pedigree errors or mutations that occurred in different generations of ancestors. Hovawart, old German breed, was used as an example. The number and frequencies of mtDNA haplotypes were calculated based on numbers of dam lines and their representatives. The scale of potential errors in calculations that can result from pedigree errors or from new mutations in ancestors from the 5th or 10th ancestral generation was evaluated. The analysis included 368 breeding bitches from four German kennel organizations. The bitches represented three dam lines, with the Ho1, Ho2 and HoU mtDNA haplotypes. Significant differences in the frequency of the haplotypes in the population, from 0.27 to 73.37 %, and among kennel organizations and regions of the country were recorded. Considerable differences in the scale of potential errors in calculations arising from mtDNA mutations or pedigree errors were noted between 0.27 and 28.69 %, depending on the number of representatives of the subline in which the error appeared and the generation taken into account in the simulations. The study revealed an interesting paradox: although the differences between the haplotypes are the result of events (mutations) from thousands of years ago, the number and the frequencies of the haplotypes in the population are the result of the modern history of the population and current breeding policy.
Collapse
|
8
|
Spadaro A, Ream K, Braham C, Webb KM. Local mitochondrial DNA haplotype databases needed for domestic dog populations that have experienced founder effect. Forensic Sci Int 2015; 248:113-8. [PMID: 25612881 DOI: 10.1016/j.forsciint.2014.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/19/2014] [Accepted: 12/27/2014] [Indexed: 10/24/2022]
Abstract
Biological material from pets is often collected as evidence from crime scenes. Due to sample type and quality, mitochondrial DNA (mtDNA) is frequently evaluated to identify the potential contributor. MtDNA has a lower discriminatory power than nuclear DNA with multiple individuals in a population potentially carrying the same mtDNA sequence, or haplotype. The frequency distribution of mtDNA haplotypes in a population must be known in order to determine the evidentiary value of a match between crime scene evidence and the potential contributor of the biological material. This is especially important in geographic areas that include remote and/or isolated populations where founder effect may have lead to a decrease in genetic diversity and a non-random distribution of haplotypes relative to the population at large. Here we compared the haplotype diversity in dogs from the noncontiguous states of Alaska and Hawaii relative to the contiguous United States (US). We report a greater proportion of dogs carrying an A haplotype in Alaska relative to any other US population. Significant variation in the distribution of haplotype frequencies was discovered when comparing the haplotype diversity of dogs in Hawaii to that of the continental US. Each of these regions exhibits reduced genetic diversity relative to the contiguous US, likely due to founder effect. We recommend that specific databases be created to accurately represent the mitochondrial haplotype diversity in these remote areas. Furthermore, our work demonstrates the importance of local surveys for populations that may have experienced found effect.
Collapse
Affiliation(s)
- Amanda Spadaro
- Department of Biology, Allegheny College, Meadville, PA, United States
| | - Kelsey Ream
- Department of Natural Resources and Environmental Science, University of Illinois, Urbana, IL, United States
| | - Caitlyn Braham
- Department of Graduate Studies, John Carroll University, University Heights, OH, United States
| | - Kristen M Webb
- Department of Biology, Allegheny College, Meadville, PA, United States.
| |
Collapse
|
9
|
Verscheure S, Backeljau T, Desmyter S. Length heteroplasmy of the polyC-polyT-polyC stretch in the dog mtDNA control region. Int J Legal Med 2014; 129:927-35. [PMID: 25394743 DOI: 10.1007/s00414-014-1106-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
Abstract
Previously, the mitochondrial control region of 214 Belgian dogs was sequenced. Analysis of this data indicated length heteroplasmy of the polyT stretch in the polyC-polyT-polyC stretch from positions 16661 to 16674. Nine polyC-polyT-polyC haplotype combinations were observed, consisting of seven major haplotypes (highest signal intensity) combined with minor haplotypes (lower signal intensity) one T shorter than the major haplotype in all but three dogs. The longer the polyT stretch, the smaller was the difference in signal intensity between the major and minor haplotype peaks. Additional sequencing, cloning, and PCR trap experiments were performed to further study the intra-individual variation of this mitochondrial DNA (mtDNA) region. Cloning experiments demonstrated that the proportion of clones displaying the minor haplotypes also increased with the length of the polyT stretch. Clone amplification showed that in vitro polymerase errors might contribute to the length heteroplasmy of polyT stretches with at least 10 Ts. Although major and minor polyC-polyT-polyC haplotypes did not differ intra-individually within and between tissues in this study, interpretation of polyT stretch variation should be handled with care in forensic casework.
Collapse
Affiliation(s)
- Sophie Verscheure
- National Institute of Criminalistics and Criminology, Vilvoordsesteenweg 100, 1120, Brussels, Belgium,
| | | | | |
Collapse
|
10
|
Verscheure S, Backeljau T, Desmyter S. Coding region SNP analysis to enhance dog mtDNA discrimination power in forensic casework. Forensic Sci Int Genet 2014; 14:86-95. [PMID: 25299153 DOI: 10.1016/j.fsigen.2014.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/30/2014] [Accepted: 09/07/2014] [Indexed: 11/26/2022]
Abstract
The high population frequencies of three control region haplotypes contribute to the low discrimination power of the dog mtDNA control region. It also diminishes the evidential power of a match with one of these haplotypes in forensic casework. A mitochondrial genome study of 214 Belgian dogs suggested 26 polymorphic coding region sites that successfully resolved dogs with the three most frequent control region haplotypes. In this study, three SNP assays were developed to determine the identity of the 26 informative sites. The control region of 132 newly sampled dogs was sequenced and added to the study of 214 dogs. The assays were applied to 58 dogs of the haplotypes of interest, which confirmed their suitability for enhancing dog mtDNA discrimination power. In the Belgian population study of 346 dogs, the set of 26 sites divided the dogs into 25 clusters of mtGenome sequences with substantially lower population frequency estimates than their control region sequences. In case of a match with one of the three control region haplotypes, using these three SNP assays in conjunction with control region sequencing would augment the exclusion probability of dog mtDNA analysis from 92.9% to 97.0%.
Collapse
Affiliation(s)
- Sophie Verscheure
- National Institute of Criminalistics and Criminology, Vilvoordsesteenweg 100, B-1120 Brussels, Belgium; University of Antwerp (Evolutionary Ecology Group), Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | - Thierry Backeljau
- University of Antwerp (Evolutionary Ecology Group), Groenenborgerlaan 171, B-2020 Antwerp, Belgium; Royal Belgian Institute of Natural Sciences (OD "Taxonomy and Phylogeny" and JEMU), Vautierstraat 29, B-1000 Brussels, Belgium
| | - Stijn Desmyter
- National Institute of Criminalistics and Criminology, Vilvoordsesteenweg 100, B-1120 Brussels, Belgium
| |
Collapse
|