Fisch-Muller S, Mol JHA, Covain R. An integrative framework to reevaluate the Neotropical catfish genus Guyanancistrus (Siluriformes: Loricariidae) with particular emphasis on the Guyanancistrus brevispinis complex.
PLoS One 2018;
13:e0189789. [PMID:
29298344 PMCID:
PMC5752014 DOI:
10.1371/journal.pone.0189789]
[Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 12/03/2017] [Indexed: 11/29/2022] Open
Abstract
Characterizing and naming species becomes more and more challenging due to the increasing difficulty of accurately delineating specific bounderies. In this context, integrative taxonomy aims to delimit taxonomic units by leveraging the complementarity of multiple data sources (geography, morphology, genetics, etc.). However, while the theoretical framework of integrative taxonomy has been explicitly stated, methods for the simultaneous analysis of multiple data sets are poorly developed and in many cases different information sources are still explored successively. Multi-table methods developed in the field of community ecology provide such an intregrative framework. In particular, multiple co-inertia analysis is flexible enough to allow the integration of morphological, distributional, and genetic data in the same analysis. We have applied this powerfull approach to delimit species boundaries in a group of poorly differentiated catfishes belonging to the genus Guyanancistrus from the Guianas region of northeastern South America. Because the species G. brevispinis has been claimed to be a species complex consisting of five species, particular attention was paid to taxon. Separate analyses indicated the presence of eight distinct species of Guyanancistrus, including five new species and one new genus. However, none of the preliminary analyses revealed different lineages within G. brevispinis, and the multi-table analysis revealed three intraspecific lineages. After taxonomic clarifications and description of the new genus, species and subspecies, a reappraisal of the biogeography of Guyanancistrus members was performed. This analysis revealed three distinct dispersals from the Upper reaches of Amazonian tributaries toward coastal rivers of the Eastern Guianas Ecoregion. The central role played by the Maroni River, as gateway from the Amazon basin, was confirmed. The Maroni River was also found to be a center of speciation for Guyanancistrus (with three species and two subspecies), as well as a source of dispersal of G. brevispinis toward the other main basins of the Eastern Guianas.
Collapse