1
|
Roslin T, Somervuo P, Pentinsaari M, Hebert PDN, Agda J, Ahlroth P, Anttonen P, Aspi J, Blagoev G, Blanco S, Chan D, Clayhills T, deWaard J, deWaard S, Elliot T, Elo R, Haapala S, Helve E, Ilmonen J, Hirvonen P, Ho C, Itämies J, Ivanov V, Jakovlev J, Juslén A, Jussila R, Kahanpää J, Kaila L, Jari-PekkaKaitila, Kakko A, Kakko I, Karhu A, Karjalainen S, Kjaerandsen J, Koskinen J, Laasonen EM, Laasonen L, Laine E, Lampila P, Levesque-Beaudin V, Lu L, Lähteenaro M, Majuri P, Malmberg S, Manjunath R, Martikainen P, Mattila J, McKeown J, Metsälä P, Miklasevskaja M, Miller M, Miskie R, Muinonen A, Veli-MattiMukkala, Naik S, Nikolova N, Nupponen K, Ovaskainen O, Österblad I, Paasivirta L, Pajunen T, Parkko P, Paukkunen J, Penttinen R, Perez K, Pohjoismäki J, Prosser S, Raekunnas M, Rahulan M, Rannisto M, Ratnasingham S, Raukko P, Rinne A, Rintala T, Miranda Romo S, Salmela J, Salokannel J, Savolainen R, Schulman L, Sihvonen P, Soliman D, Sones J, Steinke C, Ståhls G, Tabell J, Tiusanen M, Várkonyi G, Vesterinen EJ, Viitanen E, Vikberg V, Viitasaari M, Vilen J, Warne C, Wei C, Winqvist K, Zakharov E, Mutanen M. A molecular-based identification resource for the arthropods of Finland. Mol Ecol Resour 2021; 22:803-822. [PMID: 34562055 DOI: 10.1111/1755-0998.13510] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society.
Collapse
Affiliation(s)
- Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Panu Somervuo
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Mikko Pentinsaari
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Paul D N Hebert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Jireh Agda
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Petri Ahlroth
- Finnish Environment Institute (SYKE), Helsinki, Finland
| | - Perttu Anttonen
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Jouni Aspi
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Gergin Blagoev
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Santiago Blanco
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Dean Chan
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | | | - Jeremy deWaard
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Stephanie deWaard
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Tyler Elliot
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Riikka Elo
- Zoological Museum, Biodiversity Unit, University of Turku, Turku, Finland.,Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | | | | | - Jari Ilmonen
- Metsähallitus, Parks & Wildlife Finland, Vantaa, Finland
| | | | - Chris Ho
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | | | - Vladislav Ivanov
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | | | - Aino Juslén
- Finnish Museum of Natural History 'Luomus', University of Helsinki, Helsinki, Finland
| | | | - Jere Kahanpää
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Lauri Kaila
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | | | | | - Iiro Kakko
- Forssa Museum of Natural History, Forssa, Finland
| | | | | | - Jostein Kjaerandsen
- The Arctic University Museum of Norway, UiT -The Arctic University of Norway, Langnes, Tromsø, Norway
| | - Janne Koskinen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland.,Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | | | | | | | | | | | - Liuqiong Lu
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Meri Lähteenaro
- Division of Systematics, Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Entomology, Swedish Museum of Natural History, Stockholm, Sweden
| | | | | | - Ramya Manjunath
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | | | | | - Jaclyn McKeown
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | | | | | - Meredith Miller
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Renee Miskie
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | | | | | - Suresh Naik
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Nadia Nikolova
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | | | - Otso Ovaskainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.,Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | - Timo Pajunen
- Finnish Museum of Natural History 'Luomus', University of Helsinki, Helsinki, Finland
| | | | - Juho Paukkunen
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Ritva Penttinen
- Zoological Museum, Biodiversity Unit, University of Turku, Turku, Finland.,Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Kate Perez
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Jaakko Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Sean Prosser
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | | | - Miduna Rahulan
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Meeri Rannisto
- Finnish Museum of Natural History 'Luomus', University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | - Jukka Salmela
- Regional Museum of Lapland, Arktikum, Rovaniemi, Finland.,Arctic Centre, University of Lapland, Rovaniemi, Finland
| | | | - Riitta Savolainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Leif Schulman
- Finnish Environment Institute (SYKE), Helsinki, Finland.,Finnish Museum of Natural History 'Luomus', University of Helsinki, Helsinki, Finland
| | - Pasi Sihvonen
- Finnish Museum of Natural History 'Luomus', University of Helsinki, Helsinki, Finland
| | - Dina Soliman
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Jayme Sones
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Claudia Steinke
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Gunilla Ståhls
- Finnish Museum of Natural History 'Luomus', University of Helsinki, Helsinki, Finland
| | | | - Mikko Tiusanen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Gergely Várkonyi
- Biodiversity Centre, Finnish Environment Institute SYKE, Kuhmo, Finland
| | - Eero J Vesterinen
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Biology, University of Turku, Turku, Finland
| | | | | | | | | | - Connor Warne
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Catherine Wei
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | | | - Evgeny Zakharov
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Marko Mutanen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
3
|
Mutanen M, Kivelä SM, Vos RA, Doorenweerd C, Ratnasingham S, Hausmann A, Huemer P, Dincă V, van Nieukerken EJ, Lopez-Vaamonde C, Vila R, Aarvik L, Decaëns T, Efetov KA, Hebert PDN, Johnsen A, Karsholt O, Pentinsaari M, Rougerie R, Segerer A, Tarmann G, Zahiri R, Godfray HCJ. Species-Level Para- and Polyphyly in DNA Barcode Gene Trees: Strong Operational Bias in European Lepidoptera. Syst Biol 2016; 65:1024-1040. [PMID: 27288478 PMCID: PMC5066064 DOI: 10.1093/sysbio/syw044] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 11/14/2022] Open
Abstract
The proliferation of DNA data is revolutionizing all fields of systematic research. DNA barcode sequences, now available for millions of specimens and several hundred thousand species, are increasingly used in algorithmic species delimitations. This is complicated by occasional incongruences between species and gene genealogies, as indicated by situations where conspecific individuals do not form a monophyletic cluster in a gene tree. In two previous reviews, non-monophyly has been reported as being common in mitochondrial DNA gene trees. We developed a novel web service “Monophylizer” to detect non-monophyly in phylogenetic trees and used it to ascertain the incidence of species non-monophyly in COI (a.k.a. cox1) barcode sequence data from 4977 species and 41,583 specimens of European Lepidoptera, the largest data set of DNA barcodes analyzed from this regard. Particular attention was paid to accurate species identification to ensure data integrity. We investigated the effects of tree-building method, sampling effort, and other methodological issues, all of which can influence estimates of non-monophyly. We found a 12% incidence of non-monophyly, a value significantly lower than that observed in previous studies. Neighbor joining (NJ) and maximum likelihood (ML) methods yielded almost equal numbers of non-monophyletic species, but 24.1% of these cases of non-monophyly were only found by one of these methods. Non-monophyletic species tend to show either low genetic distances to their nearest neighbors or exceptionally high levels of intraspecific variability. Cases of polyphyly in COI trees arising as a result of deep intraspecific divergence are negligible, as the detected cases reflected misidentifications or methodological errors. Taking into consideration variation in sampling effort, we estimate that the true incidence of non-monophyly is ∼23%, but with operational factors still being included. Within the operational factors, we separately assessed the frequency of taxonomic limitations (presence of overlooked cryptic and oversplit species) and identification uncertainties. We observed that operational factors are potentially present in more than half (58.6%) of the detected cases of non-monophyly. Furthermore, we observed that in about 20% of non-monophyletic species and entangled species, the lineages involved are either allopatric or parapatric—conditions where species delimitation is inherently subjective and particularly dependent on the species concept that has been adopted. These observations suggest that species-level non-monophyly in COI gene trees is less common than previously supposed, with many cases reflecting misidentifications, the subjectivity of species delimitation or other operational factors.
Collapse
Affiliation(s)
- Marko Mutanen
- Department of Genetics and Physiology, University of Oulu, Finland;
| | | | - Rutger A Vos
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | | | - Sujeevan Ratnasingham
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Canada
| | - Axel Hausmann
- SNSB - Bavarian State Collection of Zoology, Munich, Germany
| | - Peter Huemer
- Tiroler Landesmuseen-Betriebsgesellschaft m.b.H., Innsbruck, Austria
| | - Vlad Dincă
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Canada.,Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | | | - Carlos Lopez-Vaamonde
- INRA, UR633 Zoologie Forestière, 45075 Orléans, France.,Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université François-Rabelais de Tours, UFR Sciences et Techniques, 37200 Tours, France
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Leif Aarvik
- Natural History Museum University of Oslo, Norway
| | - Thibaud Decaëns
- Centre d'Écologie Fonctionnelle et Évolutive, UMR 5175 CNRS / University of Montpellier / University of Montpellier 3 / EPHE / SupAgro Montpellier / INRA / IRD, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | | | - Paul D N Hebert
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Canada
| | | | - Ole Karsholt
- Zoologisk Museum, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | | | - Rodolphe Rougerie
- Département Systématique et Evolution, Muséum National d'Histoire Naturelle, Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205 MNHN, CNRS, UPMC, EPHE, Sorbonne Universités, Paris, France
| | - Andreas Segerer
- SNSB - Bavarian State Collection of Zoology, Munich, Germany
| | - Gerhard Tarmann
- Tiroler Landesmuseen-Betriebsgesellschaft m.b.H., Innsbruck, Austria
| | - Reza Zahiri
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Canada.,Ottawa Plant Laboratory, Canadian Food Inspection Agency, Canada
| | | |
Collapse
|