1
|
Turcio R, Di Matteo F, Capolupo I, Ciaglia T, Musella S, Di Chio C, Stagno C, Campiglia P, Bertamino A, Ostacolo C. Voltage-Gated K + Channel Modulation by Marine Toxins: Pharmacological Innovations and Therapeutic Opportunities. Mar Drugs 2024; 22:350. [PMID: 39195466 DOI: 10.3390/md22080350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Bioactive compounds are abundant in animals originating from marine ecosystems. Ion channels, which include sodium, potassium, calcium, and chloride, together with their numerous variants and subtypes, are the primary molecular targets of the latter. Based on their cellular targets, these venom compounds show a range of potencies and selectivity and may have some therapeutic properties. Due to their potential as medications to treat a range of (human) diseases, including pain, autoimmune disorders, and neurological diseases, marine molecules have been the focus of several studies over the last ten years. The aim of this review is on the various facets of marine (or marine-derived) molecules, ranging from structural characterization and discovery to pharmacology, culminating in the development of some "novel" candidate chemotherapeutic drugs that target potassium channels.
Collapse
Affiliation(s)
- Rita Turcio
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | | | - Ilaria Capolupo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, 98166 Messina, Italy
| | - Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, 98166 Messina, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
2
|
Pech-Puch D, Forero AM, Fuentes-Monteverde JC, Lasarte-Monterrubio C, Martinez-Guitian M, González-Salas C, Guillén-Hernández S, Villegas-Hernández H, Beceiro A, Griesinger C, Rodríguez J, Jiménez C. Antimicrobial Diterpene Alkaloids from an Agelas citrina Sponge Collected in the Yucatán Peninsula. Mar Drugs 2022; 20:298. [PMID: 35621949 PMCID: PMC9143306 DOI: 10.3390/md20050298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Three new diterpene alkaloids, (+)-8-epiagelasine T (1), (+)-10-epiagelasine B (2), and (+)-12-hydroxyagelasidine C (3), along with three known compounds, (+)-ent-agelasine F (4), (+)-agelasine B (5), and (+)-agelasidine C (6), were isolated from the sponge Agelas citrina, collected on the coasts of the Yucatán Peninsula (Mexico). Their chemical structures were elucidated by 1D and 2D NMR spectroscopy, HRESIMS techniques, and a comparison with literature data. Although the synthesis of (+)-ent-agelasine F (4) has been previously reported, this is the first time that it was isolated as a natural product. The evaluation of the antimicrobial activity against the Gram-positive pathogens Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis showed that all of them were active, with (+)-10-epiagelasine B (2) being the most active compound with an MIC in the range of 1-8 µg/mL. On the other hand, the Gram-negative pathogenes Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae were also evaluated, and only (+)-agelasine B (5) showed a moderate antibacterial activity with a MIC value of 16 μg/mL.
Collapse
Affiliation(s)
- Dawrin Pech-Puch
- Departamento de Química, Facultade de Ciencias e Centro de Investigacións Científicas Avanzadas (CICA), Universidade de A Coruña, 15071 A Coruña, Spain; (D.P.-P.); (A.M.F.)
- Departamento de Biología Marina, Universidad Autónoma de Yucatán, Km. 15.5, Carretera Mérida-Xmatkuil, A.P. 4-116 Itzimná, Merida C.P. 97100, Yucatán, Mexico; (C.G.-S.); (S.G.-H.); (H.V.-H.)
| | - Abel M. Forero
- Departamento de Química, Facultade de Ciencias e Centro de Investigacións Científicas Avanzadas (CICA), Universidade de A Coruña, 15071 A Coruña, Spain; (D.P.-P.); (A.M.F.)
| | - Juan Carlos Fuentes-Monteverde
- Department of NMR Based Structural Biology, Max Planck Institute (MPI) for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; (J.C.F.-M.); (C.G.)
| | - Cristina Lasarte-Monterrubio
- Microbiology Department of the University Hospital A Coruña (CHUAC), Institute of Biomedical Research of A Coruña (INIBIC), Centro de Investigación Biomédica en Red (CIBER) Infec., 15006 A Coruña, Spain; (C.L.-M.); (M.M.-G.); (A.B.)
| | - Marta Martinez-Guitian
- Microbiology Department of the University Hospital A Coruña (CHUAC), Institute of Biomedical Research of A Coruña (INIBIC), Centro de Investigación Biomédica en Red (CIBER) Infec., 15006 A Coruña, Spain; (C.L.-M.); (M.M.-G.); (A.B.)
| | - Carlos González-Salas
- Departamento de Biología Marina, Universidad Autónoma de Yucatán, Km. 15.5, Carretera Mérida-Xmatkuil, A.P. 4-116 Itzimná, Merida C.P. 97100, Yucatán, Mexico; (C.G.-S.); (S.G.-H.); (H.V.-H.)
| | - Sergio Guillén-Hernández
- Departamento de Biología Marina, Universidad Autónoma de Yucatán, Km. 15.5, Carretera Mérida-Xmatkuil, A.P. 4-116 Itzimná, Merida C.P. 97100, Yucatán, Mexico; (C.G.-S.); (S.G.-H.); (H.V.-H.)
| | - Harold Villegas-Hernández
- Departamento de Biología Marina, Universidad Autónoma de Yucatán, Km. 15.5, Carretera Mérida-Xmatkuil, A.P. 4-116 Itzimná, Merida C.P. 97100, Yucatán, Mexico; (C.G.-S.); (S.G.-H.); (H.V.-H.)
| | - Alejandro Beceiro
- Microbiology Department of the University Hospital A Coruña (CHUAC), Institute of Biomedical Research of A Coruña (INIBIC), Centro de Investigación Biomédica en Red (CIBER) Infec., 15006 A Coruña, Spain; (C.L.-M.); (M.M.-G.); (A.B.)
| | - Christian Griesinger
- Department of NMR Based Structural Biology, Max Planck Institute (MPI) for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; (J.C.F.-M.); (C.G.)
| | - Jaime Rodríguez
- Departamento de Química, Facultade de Ciencias e Centro de Investigacións Científicas Avanzadas (CICA), Universidade de A Coruña, 15071 A Coruña, Spain; (D.P.-P.); (A.M.F.)
| | - Carlos Jiménez
- Departamento de Química, Facultade de Ciencias e Centro de Investigacións Científicas Avanzadas (CICA), Universidade de A Coruña, 15071 A Coruña, Spain; (D.P.-P.); (A.M.F.)
| |
Collapse
|
3
|
Chu MJ, Li M, Ma H, Li PL, Li GQ. Secondary metabolites from marine sponges of the genus Agelas: a comprehensive update insight on structural diversity and bioactivity. RSC Adv 2022; 12:7789-7820. [PMID: 35424773 PMCID: PMC8982468 DOI: 10.1039/d1ra08765g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/03/2022] [Indexed: 01/07/2023] Open
Abstract
As one of the most common marine sponges in tropical and subtropical oceans, the sponges of the genus Agelas, have emerged as unique and yet under-investigated pools for discovery of natural products with fabulous molecular diversity and myriad interesting biological activities. The present review highlights the chemical structure and biological activity of 355 compounds that have been isolated and characterized from the members of Agelas sponges, over the period of about five decades (from 1971 to November 2021). For a better understanding, these numerous compounds are firstly classified and presented according to their carbon skeleton as well as their biosynthetic origins. Relevant summaries focusing on the source organism and the associated bioactivity of these compounds belonging to different chemical classes are also provided. This review highlights sponges of the genus Agelas as exciting source for discovery of intriguing natural compounds.
Collapse
Affiliation(s)
- Mei-Jun Chu
- College of Veterinary Medicine, Qingdao Agricultural University Qingdao 266109 China
| | - Meng Li
- Department of Pharmacy, Qingdao Central Hospital Qingdao 266042 China
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University Qingdao 266109 China
| | - Ping-Lin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao 266235 China
| | - Guo-Qiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao 266235 China
| |
Collapse
|
4
|
Bayari SH, Şen EH, Ide S, Topaloglu B. Structural studies on Demospongiae sponges from Gökçeada Island in the Northern Aegean Sea. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 192:368-377. [PMID: 29179087 DOI: 10.1016/j.saa.2017.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/23/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
The Demospongiae is the largest Class in the phylum Porifera (sponges). Most sponge species in the Class Demospongiae have a skeleton of siliceous spicules and/or protein spongin or both. The first aim of this study was to perform the morphological and structural characterization of the siliceous spicules of four species belonging to Class Demospongiae (Suberites domuncula, Axinella polypoides, Axinella damicornis and Agelas oroides) collected around Gökçeada Island-Turkey (Northern Aegean Sea). The characterizations were carried out using a combination of Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM/EDX), Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Small Angle X-ray Scattering (SAXS) techniques. The sponge Chondrosia reniformis (Porifera, Demospongiae) lacks a structural skeleton of spicules or the spongin. It consists mainly of a collagenous tissue. The collagen with sponge origin is an important source in biomedical and pharmaceutical applications. The second aim of this study was to provide more information on the molecular structure of collagen of outer (ectosome) and inner (choanosome) regions of the Chondrosia reniformis using ATR-FTIR spectroscopy. Hierarchical clustering analysis (HCA) was also used for the discrimination of ATR-FTIR spectra of species.
Collapse
Affiliation(s)
- Sevgi Haman Bayari
- Department of Physics Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey.
| | - Elif Hilal Şen
- Department of Physics Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| | - Semra Ide
- Department of Physics Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| | - Bülent Topaloglu
- Department of Marine Biology, Faculty of Fisheries, Istanbul University, 34480 Istanbul, Turkey
| |
Collapse
|