1
|
Zhang M, Wang J, Liu R, Wang Q, Qin S, Chen Y, Li W. The role of Keap1-Nrf2 signaling pathway in the treatment of respiratory diseases and the research progress on targeted drugs. Heliyon 2024; 10:e37326. [PMID: 39309822 PMCID: PMC11414506 DOI: 10.1016/j.heliyon.2024.e37326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Lungs are exposed to external oxidants from the environment as in harmful particles and smog, causing oxidative stress in the lungs and consequently respiratory ailment. The NF-E2-related factor 2 (Nrf2) is the one with transcriptional regulatory function, while its related protein Kelch-like ECH-associated protein 1 (Keap1) inhibits Nrf2 activity. Together, they form the Keap1-Nrf2 pathway, which regulates the body's defense against oxidative stress. This pathway has been shown to maintain cellular homeostasis during oxidative stressing, inflammation, oncogenesis, and apoptosis by coordinating the expression of cytoprotective genes and making it a potential therapeutic target for respiratory diseases. This paper summarizes this point in detail in Chapter 2. In addition, this article summarizes the current drug development and clinical research progress related to the Keap1-Nrf2 signaling pathway, with a focus on the potential of Nrf2 agonists in treating respiratory diseases. Overall, the article reviews the regulatory mechanisms of the Keap1-Nrf2 signaling pathway in respiratory diseases and the progress of targeted drug research, aiming to provide new insights for treatment.
Collapse
Affiliation(s)
- Mengyang Zhang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, 92093, USA
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| |
Collapse
|
2
|
Yan XJ, Zhan CP, Lv Y, Mao DD, Zhou RC, Xv YM, Yu GF. Utility of serum nuclear factor erythroid 2-related factor 2 as a potential prognostic biomarker of severe traumatic brain injury in adults: A prospective cohort study. Front Neurol 2022; 13:1013062. [PMID: 36388174 PMCID: PMC9663921 DOI: 10.3389/fneur.2022.1013062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/10/2022] [Indexed: 12/01/2022] Open
Abstract
Objective Nuclear factor erythroid 2-related factor 2 (Nrf2) may harbor endogenous neuroprotective role. We strived to ascertain the prognostic significance of serum Nrf2 in severe traumatic brain injury (sTBI). Methods This prospective cohort study included 105 controls and 105 sTBI patients, whose serum Nrf2 levels were quantified. Its relations to traumatic severity and 180-day overall survival, mortality, and poor prognosis (extended Glasgow Outcome Scale score 1–4) were discerned using multivariate analysis. Results There was a substantial enhancement of serum Nrf1 levels of patients (median, 10.9 vs. 3.3 ng/ml; P < 0.001), as compared to controls. Serum Nrf2 levels were independently correlative to Rotterdam computed tomography (CT) scores (ρ = 0.549, P < 0.001; t = 2.671, P = 0.009) and Glasgow Coma Scale (GCS) scores (ρ = −0.625, P < 0.001; t = −3.821, P < 0.001). Serum Nrf2 levels were significantly higher in non-survivors than in survivors (median, 12.9 vs. 10.3 ng/ml; P < 0.001) and in poor prognosis patients than in good prognosis patients (median, 12.5 vs. 9.4 ng/ml; P < 0.001). Patients with serum Nrf2 levels > median value (10.9 ng/ml) had markedly shorter 180-day overall survival time than the other remainders (mean, 129.3 vs. 161.3 days; P = 0.002). Serum Nrf2 levels were independently predictive of 180-day mortality (odds ratio, 1.361; P = 0.024), overall survival (hazard ratio, 1.214; P = 0.013), and poor prognosis (odds ratio, 1.329; P = 0.023). Serum Nrf2 levels distinguished the risks of 180-day mortality and poor prognosis with areas under receiver operating characteristic curve (AUCs) at 0.768 and 0.793, respectively. Serum Nrf2 levels > 10.3 ng/ml and 10.8 ng/ml discriminated patients at risk of 180-day mortality and poor prognosis with the maximum Youden indices of 0.404 and 0.455, respectively. Serum Nrf2 levels combined with GCS scores and Rotterdam CT scores for death prediction (AUC, 0.897; 95% CI, 0.837–0.957) had significantly higher AUC than GCS scores (P = 0.028), Rotterdam CT scores (P = 0.007), or serum Nrf2 levels (P = 0.006) alone, and the combination for poor outcome prediction (AUC, 0.889; 95% CI, 0.831–0.948) displayed significantly higher AUC than GCS scores (P = 0.035), Rotterdam CT scores (P = 0.006), or serum Nrf2 levels (P = 0.008) alone. Conclusion Increased serum Nrf2 levels are tightly associated with traumatic severity and prognosis, supporting the considerable prognostic role of serum Nrf2 in sTBI.
Collapse
|
3
|
Ban WH, Rhee CK. Role of nuclear factor erythroid 2-related factor 2 in chronic obstructive pulmonary disease. Tuberc Respir Dis (Seoul) 2022; 85:221-226. [PMID: 35255667 PMCID: PMC9263341 DOI: 10.4046/trd.2021.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation due to chronic airway inflammation and destruction of the alveolar structure from persistent exposure to oxidative stress. The body has various antioxidant mechanisms for efficiently coping with such oxidative stress. The nuclear factor erythroid 2-related factor 2 (Nrf2)–antioxidant response element (ARE) is a representative system. Dysregulation of the Nrf2-ARE pathway is responsible for the development and promotion of COPD. Furthermore, COPD severity is also closely related to this pathway. There has been a clinical impetus to use Nrf2 for diagnostic and therapeutic purposes. Therefore, in this work, we systematically reviewed the clinical significance of Nrf2 in COPD patients, and discuss the value of Nrf2 as a potential COPD biomarker.
Collapse
Affiliation(s)
- Woo Ho Ban
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Address for correspondence Chin Kook Rhee, M.D., Ph.D. Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul 06591, Republic of Korea Phone 82-2-2258-6067 Fax 82-2-599-3589 E-mail
| |
Collapse
|
4
|
Ni Y, Yu Y, Dai R, Shi G. Diffusing capacity in chronic obstructive pulmonary disease assessment: A meta-analysis. Chron Respir Dis 2021; 18:14799731211056340. [PMID: 34855516 PMCID: PMC8649441 DOI: 10.1177/14799731211056340] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022] Open
Abstract
To achieve a multidimensional evaluation of chronic obstructive pulmonary disease (COPD) patients, the spirometry measures are supplemented by assessment of symptoms, risk of exacerbations, and CT imaging. However, the measurement of diffusing capacity of the lung for carbon monoxide (DLCO) is not included in most common used models of COPD assessment. Here, we conducted a meta-analysis to evaluate the role of DLCO in COPD assessment.The studies were identified by searching the terms "diffusing capacity" OR "diffusing capacity for carbon monoxide" or "DLCO" AND "COPD" AND "assessment" in Pubmed, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Scopus, and Web of Science databases. The mean difference of DLCO % predict was assessed in COPD patient with different severity (according to GOLD stage and GOLD group), between COPD patients with or without with frequent exacerbation, between survivors and non-survivors, between emphysema dominant and non-emphysema dominant COPD patients, and between COPD patients with or without pulmonary hypertension.43 studies were included in the meta-analysis. DLCO % predicted was significantly lower in COPD patients with more severe airflow limitation (stage II/IV), more symptoms (group B/D), and high exacerbation risk (group C/D). Lower DLCO % predicted was also found in exacerbation patients and non-survivors. Low DLCO % predicted was related to emphysema dominant phenotype, and COPD patients with PH.The current meta-analysis suggested that DLCO % predicted might be an important measurement for COPD patients in terms of severity, exacerbation risk, mortality, emphysema domination, and presence of pulmonary hypertension. As diffusion capacity reflects pulmonary ventilation and perfusion at the same time, the predictive value of DLCO or DLCO combined with other criteria worth further exploration.
Collapse
Affiliation(s)
- Yingmeng Ni
- Department of Respiratory and Critical Care
Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Youchao Yu
- Department of Respiratory and Critical Care
Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Ranran Dai
- Department of Respiratory and Critical Care
Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Guochao Shi
- Department of Respiratory and Critical Care
Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| |
Collapse
|
5
|
Effects of Pirfenidone and Nintedanib on Markers of Systemic Oxidative Stress and Inflammation in Patients with Idiopathic Pulmonary Fibrosis: A Preliminary Report. Antioxidants (Basel) 2020; 9:antiox9111064. [PMID: 33143144 PMCID: PMC7692317 DOI: 10.3390/antiox9111064] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022] Open
Abstract
Introduction: In vitro evidence suggests that pirfenidone and nintedanib, approved agents for the treatment of idiopathic pulmonary fibrosis (IPF), exert anti-inflammatory and anti-oxidant effects. We aimed to investigate such effects in vivo in IPF patients. Methods: Systemic circulating markers of oxidative stress [nuclear factor erythroid 2–related factor 2 (Nrf2), thiobarbituric acid- reactive substances (TBARS), homocysteine (Hcy), cysteine (Cys), asymmetric dimethylarginine (ADMA) and ADMA/Arginine ratio, glutathione (GSH), plasma protein –SH (PSH), and taurine (Tau)] and inflammation [Kynurenine (Kyn), Tryptophan (Trp) and Kyn/Trp ratio] were measured at baseline and after 24-week treatment in 18 IPF patients (10 treated with pirfenidone and 8 with nintedanib) and in 18 age- and sex-matched healthy controls. Results: Compared to controls, IPF patients had significantly lower concentrations of reduced blood GSH (457 ± 73 µmol/L vs 880 ± 212 µmol/L, p < 0.001) and plasma PSH (4.24 ± 0.95 µmol/g prot vs 5.28 ± 1.35 µmol/g prot, p = 0.012). Pirfenidone treatment significantly decreased the Kyn/Trp ratio (0.030 ± 0.011 baseline vs 0.025 ± 0.010 post-treatment, p = 0.048) whilst nintedanib treatment significantly increased blood GSH (486 ± 70 μmol/L vs 723 ± 194 μmol/L, p = 0.006) and reduced ADMA concentrations (0.501 ± 0.094 vs. 0.468 ± 0.071 μmol/L, p = 0.024). Conclusion: pirfenidone and nintedanib exert beneficial effects on specific markers of oxidative stress and inflammation in IPF patients.
Collapse
|
6
|
Changes in the Nrf2/Keap1 Ratio and PON1 Concentration in Plasma of Patients Undergoing the Left Main Coronary Artery Stenting. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [DOI: 10.1155/2020/8249729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nuclear factor erythroid 2-related factor2 (Nrf2), together with its inhibitor Kelch-like ECH-associated protein 1 (Keap1), is a crucial regulator of cellular redox response. Nrf2 binds to the antioxidant response element (ARE) present in the DNA sequence of a broad group of antioxidant compounds, including paraoxonase (PON1), inducing their transcription. This study was to answer the question of the effect of temporary ischemia/oxidative stress resulting from the left main stenting via percutaneous coronary intervention (LMPCI) performed in the patients included in this study on the cellular redox balance, which is guarded by the Nrf2/Keap1 interaction. We expected a reflection of the redox imbalance due to reactive oxygen species (ROS) in the change in PON1 concentration observed in the following stages of the study, as well as in total antioxidant capacity (TAC) levels. Our results showed the mobilization of cellular Nrf2/Keap1 team right after the procedure (pre-LMPCI median: 2.532, range: 0.07-11.88; post-LMPCI median: 3.735, range: 0.1545-16.18; 24 h-LMPCI median: 5.596, range: 0.02-49.18), which suggest being the result of oxidative stress that accompanies percutaneous coronary intervention (PCI). The course of Keap1 and Nrf2 concentrations at all stages of the experiment appeared to show that Keap1 shadowed the Nrf2 to switch off its activity after Nrf2 induced the mobilization of the antioxidant response. We observed an increase in PON1 concentration (pre-LMPCI median: 179.3, range: 49.76-6120; post-LMPCI median: 215.7, range: 3.80-2771) and a decrease in the TAC level immediately after PCI (pre-LMPC:
, post-LMPCI:
). This study design allowed for the first time to analyze the chronology of mechanisms and the relationship between selected parameters reflecting the redox state in patients’ plasma. We may conclude that ischemia induced by the PCI was the source of imbalance in the Nrf2/Keap1 ratio via oxidative stress, and this leads to an increase in PON1 concentration first and, in the next step, the TAC mobilization.
Collapse
|
7
|
Exposure to Air Pollution Exacerbates Inflammation in Rats with Preexisting COPD. Mediators Inflamm 2020; 2020:4260204. [PMID: 32454790 PMCID: PMC7231193 DOI: 10.1155/2020/4260204] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Particulate matter with an aerodynamic diameter equal or less than 2.5 micrometers (PM2.5) is associated with the development of chronic obstructive pulmonary disease (COPD). The mechanisms by which PM2.5 accelerates disease progression in COPD are poorly understood. In this study, we aimed to investigate the effect of PM2.5 on lung injury in rats with hallmark features of COPD. Cardinal features of human COPD were induced in a rat model by repeated cigarette smoke inhalation and bacterial infection for 8 weeks. Then, from week 9 to week 16, some of these rats with COPD were subjected to real-time concentrated atmospheric PM2.5. Lung function, pathology, inflammatory cytokines, oxidative stress, and mucus and collagen production were measured. As expected, the COPD rats had developed emphysema, inflammation, and deterioration in lung function. PM2.5 exposure resulted in greater lung function decline and histopathological changes, as reflected by increased Mucin (MUC) 5ac, MUC5b, Collagen I, Collagen III, and the profibrotic cytokine α-smooth muscle-actin (SMA), transforming growth factor- (TGF-) β1 in lung tissues. PM2.5 also aggravated inflammation, increasing neutrophils and eosinophils in bronchoalveolar lavage fluid (BALF) and cytokines including Interleukin- (IL-) 1β, granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-4. The likely mechanism is through oxidative stress as antioxidants levels were decreased, whereas oxidants were increased, indicating a detrimental shift in the oxidant-antioxidant balance. Altogether, these results suggest that PM2.5 exposure could promote the development of COPD by impairing lung function and exacerbating pulmonary injury, and the potential mechanisms are related to inflammatory response and oxidative stress.
Collapse
|
8
|
Chi Y, Di Q, Han G, Li M, Sun B. Mir-29b mediates the regulation of Nrf2 on airway epithelial remodeling and Th1/Th2 differentiation in COPD rats. Saudi J Biol Sci 2019; 26:1915-1921. [PMID: 31885483 PMCID: PMC6921304 DOI: 10.1016/j.sjbs.2019.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022] Open
Abstract
COPD, or Chronic obstructive pulmonary disease, is an inflammation-related disease and lead to cachexia and muscle wasting. Altered nuclear factor erythroid 2-related factor 2 (Nrf2) expression is found in patients of COPD because it is involved in pulmonary protective effects. MiR-29b could be activated by Nrf2. We hypothesized that miR-29b might mediate the regulation of Nrf2 on Th1/Th2 differentiation and airway epithelial remodeling in COPD rats. SD rats were exposed to smoke for COPD induction. Expression of Nrf2 mRNA and miR-29b in lung tissues was quantified. Expression of Nrf2 and matrix metalloproteinase 2 (MMP2) were also detected by immunohistochemistry and western blot. Th1 markers and Th2 markers were measured by ELISA in peripheral blood. Flow cytometry was used to detect the Th1/Th2 ratio. miR-29b and Nrf2 was manipulated at mRNA level in A549 cells using transfection. Cellular growth and migration were measured in transfectants. In lung tissues of COPD rats, expression of Nrf2 and miR-29b decreased. MMP2, a target of miR-29b, had an opposite expression to miR-29b in peripheral blood. Levels of inflammatory factors and Th1/Th2 ratio increased. MiR-29b mediated the regulation of Nrf2 on remodeling of lung epithelial cells. Blocking Nrf2 expression in A549 cells led to the opposite expression of miR-29b and further decreased MMP2 production; meanwhile, cell growth and motility were improved. Different miR-29b levels affected MMP2 expression and cellular characteristics. The findings suggested that miR-29b was a regulator the pathological progress of COPD. It mediates the effect of Nrf2 on Th1/Th2 differentiation and on remodeling process of airway epithelial cells.
Collapse
Affiliation(s)
- Yumin Chi
- Respiratory Department, Cangzhou Central Hospital, Cangzhou 061001, China
| | - Qingguo Di
- Respiratory Department, Cangzhou Central Hospital, Cangzhou 061001, China
| | - Guangchao Han
- Respiratory Department, Cangzhou Central Hospital, Cangzhou 061001, China
| | - Min Li
- Respiratory Department, Cangzhou Central Hospital, Cangzhou 061001, China
| | - Baohua Sun
- Respiratory Department, Cangzhou Central Hospital, Cangzhou 061001, China
| |
Collapse
|
9
|
Bermingham ML, Walker RM, Marioni RE, Morris SW, Rawlik K, Zeng Y, Campbell A, Redmond P, Whalley HC, Adams MJ, Hayward C, Deary IJ, Porteous DJ, McIntosh AM, Evans KL. Identification of novel differentially methylated sites with potential as clinical predictors of impaired respiratory function and COPD. EBioMedicine 2019; 43:576-586. [PMID: 30935889 PMCID: PMC6557748 DOI: 10.1016/j.ebiom.2019.03.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background The causes of poor respiratory function and COPD are incompletely understood, but it is clear that genes and the environment play a role. As DNA methylation is under both genetic and environmental control, we hypothesised that investigation of differential methylation associated with these phenotypes would permit mechanistic insights, and improve prediction of COPD. We investigated genome-wide differential DNA methylation patterns using the recently released 850 K Illumina EPIC array. This is the largest single population, whole-genome epigenetic study to date. Methods Epigenome-wide association studies (EWASs) of respiratory function and COPD were performed in peripheral blood samples from the Generation Scotland: Scottish Family Health Study (GS:SFHS) cohort (n = 3781; 274 COPD cases and 2919 controls). In independent COPD incidence data (n = 149), significantly differentially methylated sites (DMSs; p < 3.6 × 10−8) were evaluated for their added predictive power when added to a model including clinical variables, age, sex, height and smoking history using receiver operating characteristic analysis. The Lothian Birth Cohort 1936 (LBC1936) was used to replicate association (n = 895) and prediction (n = 178) results. Findings We identified 28 respiratory function and/or COPD associated DMSs, which mapped to genes involved in alternative splicing, JAK-STAT signalling, and axon guidance. In prediction analyses, we observed significant improvement in discrimination between COPD cases and controls (p < .05) in independent GS:SFHS (p = .016) and LBC1936 (p = .010) datasets by adding DMSs to a clinical model. Interpretation Identification of novel DMSs has provided insight into the molecular mechanisms regulating respiratory function and aided prediction of COPD risk. Further studies are needed to assess the causality and clinical utility of identified associations. Fund Wellcome Trust Strategic Award 10436/Z/14/Z.
Collapse
Affiliation(s)
- Mairead L Bermingham
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Stewart W Morris
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Konrad Rawlik
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, UK
| | - Yanni Zeng
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Paul Redmond
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|