1
|
Mikhailova EO. Green Silver Nanoparticles: An Antibacterial Mechanism. Antibiotics (Basel) 2024; 14:5. [PMID: 39858291 PMCID: PMC11762094 DOI: 10.3390/antibiotics14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/27/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Silver nanoparticles (AgNPs) are a promising tool in the fight against pathogenic microorganisms. "Green" nanoparticles are especially valuable due to their environmental friendliness and lower energy consumption during production, as well as their ability to minimize the number of toxic by-products. This review focuses on the features of AgNP synthesis using living organisms (bacteria, fungi, plants) and the involvement of various biological compounds in this process. The mechanism of antibacterial activity is also discussed in detail with special attention given to anti-biofilm and anti-quorum sensing activities. The toxicity of silver nanoparticles is considered in light of their further biomedical applications.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
2
|
Abdallah OM, Sedky Y, Shebl HR. Comprehensive evaluation of the antibacterial and antibiofilm activities of NiTi orthodontic wires coated with silver nanoparticles and nanocomposites: an in vitro study. BMC Oral Health 2024; 24:1345. [PMID: 39501221 PMCID: PMC11539822 DOI: 10.1186/s12903-024-05104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Fixed orthodontic appliances act as a niche for microbial growth and colonization. Coating orthodontic wires with antimicrobial silver nanoparticles (AgNPs) and nanocomposite was adopted in this study to augment the biological activity of these wires by increasing their antibacterial and antibiofilm properties and inhibiting bacterial infections that cause white spot lesions and lead to periodontal disease. METHODS Three concentrations of biologically synthesized AgNPs were used for coating NiTi wires. The shape, size, and charge of the AgNPs were determined. Six groups of 0.016 × 0.022-inch NiTi orthodontic wires, each with six wires, were used; and coated with AgNPs and nanocomposites. The antimicrobial and antibiofilm activities of these coated wires were tested against normal flora and multidrug-resistant bacteria (Gram-positive and Gram-negative bacterial isolates). The surface topography, roughness, elemental percentile, and ion release were characterized. RESULTS AgNPs and nanocomposite coated NiTi wires showed significant antimicrobial and antibiofilm activities. The chitosan-silver nanocomposite (CS-Ag) coated wires had the greatest bacterial growth inhibition against both Gram-positive and Gram-negative bacteria. The surface roughness of the coated wires was significantly reduced, impacting the surface topography and with recorded low Ni and Ag ion release rates. CONCLUSIONS NiTi orthodontic wires coated with AgNPs, and nanocomposites have shown increased antimicrobial and antibiofilm activities, with decreased surface roughness, friction resistance and limited- metal ion release.
Collapse
Affiliation(s)
- Omnia M Abdallah
- Microbiology Department, Faculty of Dentistry, Misr International University, Cairo, Egypt.
| | - Youssef Sedky
- Orthodontic Department, Faculty of Dentistry, Misr International University, Cairo, Egypt
| | - Heba R Shebl
- Microbiology Department, Faculty of Dentistry, Misr International University, Cairo, Egypt
| |
Collapse
|
3
|
Faisal S, Ullah R, Alotaibi A, Zafar S, Rizwan M, Tariq MH. Biofabrication of silver nanoparticles employing biomolecules of Paraclostridium benzoelyticum strain: Its characterization and their in-vitro antibacterial, anti-aging, anti-cancer and other biomedical applications. Microsc Res Tech 2023. [PMID: 37245116 DOI: 10.1002/jemt.24362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
The current study aims to utilize the bacteria Paraclostridium benzoelyticum strain 5610 to synthesize bio-genic silver nanoparticles (AgNPs). Biogenic AgNPs were thoroughly examined using various characterization techniques such as UV-spectroscopy, XRD, FTIR, SEM, and EDX. Synthesis of AgNPs was confirmed by UV-vis analysis resulting in absorption peak at 448.31 nm wavelength. The SEM analysis indicated the morphological characteristics and size of AgNPs which was 25.29 nm. The face centered cubic (FCC) crystallographic structure was confirmed by XRD. Furthermore, FTIR study affirmed the capping of AgNPs by different compounds found in biomass of the Paraclostridium benzoelyticum strain 5610. Later, EDX was used to determine the elemental composition with respective concentration and distribution. Additionally, in the current study the antibacterial, anti-inflammatory, antioxidant, anti-aging, and anti-cancer ability of AgNPs was assessed. The antibacterial activity of AgNPs was tested against four distinct sinusitis pathogens: Haemophilus in-fluenza, Streptococcus pyogenes, Moraxella catarrhalis and Streptococcus pneumonia. AgNPs shows significant inhibition zone against Streptococcus pyogenes 16.64 ± 0.35 followed by 14.32 ± 071 for Moraxella catarrhalis. Similarly, the antioxidant potential was found maximum (68.37 ± 0.55%) at 400 μg/mL and decrease (5.48 ± 0.65%) at 25 μg/mL, hence the significant antioxidant ability was observed. Furthermore, anti-inflammatory activity of AgNPs shows the strongest inhibitory action (42.68 ± 0.62%) for 15-LOX with lowest inhibition activity for COX-2 (13.16 ± 0.46%). AgNPs have been shown to exhibit significant inhibitory actions against the enzyme elastases AGEs (66.25 ± 0.49%), which are followed by AGEs of visperlysine (63.27 ± 0.69%). Furthermore, the AgNPs show high toxicity against HepG2 cell line which shows 53.543% reduction in the cell viability after 24 h of treatment. The anti-inflammatory activity demonstrated a potent inhibitory effect of the bio-inspired AgNPs. Overall, the biogenic AgNPs have the ability to be served for the treatments of anti-aging and also due to their anti-cancer, antioxidant abilities NPs may be a useful therapy choice for a variety of disorders including cancer, bacterial infections and other inflammatory diseases. Moreover, further studies are required in the future to evaluate their in vivo biomedical applications. HIGHLIGHTS: Biogenic synthesis of AgNPs using Paraclostridium benzoelyticum Strain for the first time. FTIR analysis confirmed capping of potent biomolecules which are of great use in applied field especially Nanomedicines. Notable antimicrobial activity against sinusitis bacteria and cytotoxic potential of synthesized AgNPs on in vitro basis produce a new idea shifting us to treat cancerous cell lines.
Collapse
Affiliation(s)
- Shah Faisal
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Pakistan
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal Alotaibi
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sania Zafar
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Rizwan
- Center for Biotechnology and Microbiology University of Swat, Pakistan
| | | |
Collapse
|
4
|
Sun S, Zhang K, Wu Y, Zhu N, Wang Y, Chen J, Leng F. Transporter drives the biosorption of heavy metals by Stenotrophomonas rhizophila JC1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45380-45395. [PMID: 35143001 DOI: 10.1007/s11356-022-18900-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
To better understand the function of transporter in heavy metal detoxification of bacteria, the transporters associated with heavy metal detoxification in S. rhizophila JC1 were analyzed, among which four members were verified by RT-qPCR. In addition, the removal rates of four single metal ions (Cr6+, Cu2+, Zn2+, Pb2+) and polymetallic ions by strain JC1 were studied, respectively. We also researched the physiological response of strain JC1 to different metal stress via morphological observation, elemental composition, functional group and membrane permeability analysis. The results showed that in the single metal ion solution, removal capacities of Cu2+ (120 mg/L) and Cr6+ (80 mg/L) of S. rhizophila JC1 reached to 79.9% and 89.3%, respectively, while in polymetallic ions solution, the removal capacity of each metal ion all decreased, and in detail, the adsorption capacity was determined Cr6+>Cu2+>Zn2+>Pb2+ under the same condition. The physiological response analyses results showed that extracellular adsorption phenomena occurred, and the change of membrane permeability hindered the uptake of metal ions by bacteria. The analysis of transporters in strain JC1 genome illustrated that a total of 323 transporters were predicted. Among them, two, six and five proteins of the cation diffusion facilitator, resistance-nodulation-division efflux and P-type ATPase families were, respectively, predicted. The expression of corresponding genes showed that the synergistic action of correlative transporters played important roles in the process of adsorption. The comparative genomics analysis revealed that S. rhizophila JC1 has long-distance evolutionary relationships with other strains, but the efflux system of S. rhizophila JC1 contained the same types of metal transporters as other metal-resistant bacteria.
Collapse
Affiliation(s)
- Shangchen Sun
- School of Petrochemical Engineering, Lanzhou University of Technology, 730050, Lanzhou, China
| | - Kexin Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, 730050, Lanzhou, China
| | - Yamiao Wu
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, 730050, Lanzhou, China
| | - Ning Zhu
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, 730050, Lanzhou, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, 730050, Lanzhou, China.
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, 730050, Lanzhou, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, 730050, Lanzhou, China
| |
Collapse
|
5
|
Al-Radadi NS, Abu-Dief AM. Silver nanoparticles (AgNPs) as a metal nano-therapy: possible mechanisms of antiviral action against COVID-19. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2068585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Najlaa S. Al-Radadi
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Ahmed M. Abu-Dief
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| |
Collapse
|
6
|
Gacem MA, Abd-Elsalam KA. Strategies for scaling up of green-synthesized nanomaterials: Challenges and future trends. GREEN SYNTHESIS OF SILVER NANOMATERIALS 2022:669-698. [DOI: 10.1016/b978-0-12-824508-8.00008-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Rai M, Ingle AP, Trzcińska-Wencel J, Wypij M, Bonde S, Yadav A, Kratošová G, Golińska P. Biogenic Silver Nanoparticles: What We Know and What Do We Need to Know? NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2901. [PMID: 34835665 PMCID: PMC8624974 DOI: 10.3390/nano11112901] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Nanobiotechnology is considered to be one of the fastest emerging fields. It is still a relatively new and exciting area of research with considerable potential for development. Among the inorganic nanomaterials, biogenically synthesized silver nanoparticles (bio-AgNPs) have been frequently used due to their unique physicochemical properties that result not only from their shape and size but also from surface coatings of natural origin. These properties determine antibacterial, antifungal, antiprotozoal, anticancer, anti-inflammatory, and many more activities of bio-AgNPs. This review provides the current state of knowledge on the methods and mechanisms of biogenic synthesis of silver nanoparticles as well as their potential applications in different fields such as medicine, food, agriculture, and industries.
Collapse
Affiliation(s)
- Mahendra Rai
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.T.-W.); (M.W.)
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.Y.)
| | - Avinash P. Ingle
- Biotechnology Centre, Department of Agricultural Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola 444104, India;
| | - Joanna Trzcińska-Wencel
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.T.-W.); (M.W.)
| | - Magdalena Wypij
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.T.-W.); (M.W.)
| | - Shital Bonde
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.Y.)
| | - Alka Yadav
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.Y.)
| | - Gabriela Kratošová
- Nanotechnology Centre, CEET, VŠB–Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava Poruba, Czech Republic;
| | - Patrycja Golińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.T.-W.); (M.W.)
| |
Collapse
|
8
|
Nene A, Galluzzi M, Hongrong L, Somani P, Ramakrishna S, Yu XF. Synthetic preparations and atomic scale engineering of silver nanoparticles for biomedical applications. NANOSCALE 2021; 13:13923-13942. [PMID: 34477675 DOI: 10.1039/d1nr01851e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to their peculiar oxidative effect, silver cations (Ag+) are well known for their antimicrobial properties and explored as therapeutic agents for biomedical applications. Size control with improved dispersion and stability are the key factors of Ag NPs (silver nanoparticles) to be used in biomedical applications. Silver based nano-materials are highly efficient due to their biological, chemical and physical properties in comparison with bulk silver. Atomic scale fabrication is achieved by rearranging the internal components of a material, in turn, influencing the mechanical, electrical, magnetic, thermal and chemical properties. For instance, size and shape have a strong impact on the optical, thermal and catalytic properties of Ag NPs. Such properties can be tuned by controlling the surface/volume ratio of Ag nanostructures with a small size (ideally <100 nm), in turn showing peculiar biological activity different from that of bulk silver. Silver nanomaterials such as nanoparticles, thin films and nanorods can be synthesized by various physical, chemical and biological methods whose most recent implementations will be described in this review. By controlling the structure-functionality relationship, silver based nano-materials have high potential for commercialization in biomedical applications. Antimicrobial, antifungal, antiviral, and anti-inflammatory Ag NPs can be applied in several fields such as pharmaceutics, sensors, coatings, cosmetics, wound healing, bio-labelling agents, antiviral drugs, and packaging.
Collapse
Affiliation(s)
- Ajinkya Nene
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | | | | | | | | | | |
Collapse
|
9
|
A Review on Silver Nanoparticles: Classification, Various Methods of Synthesis, and Their Potential Roles in Biomedical Applications and Water Treatment. WATER 2021. [DOI: 10.3390/w13162216] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent developments in nanoscience have appreciably modified how diseases are prevented, diagnosed, and treated. Metal nanoparticles, specifically silver nanoparticles (AgNPs), are widely used in bioscience. From time to time, various synthetic methods for the synthesis of AgNPs are reported, i.e., physical, chemical, and photochemical ones. However, among these, most are expensive and not eco-friendly. The physicochemical parameters such as temperature, use of a dispersing agent, surfactant, and others greatly influence the quality and quantity of the synthesized NPs and ultimately affect the material’s properties. Scientists worldwide are trying to synthesize NPs and are devising methods that are easy to apply, eco-friendly, and economical. Among such strategies is the biogenic method, where plants are used as the source of reducing and capping agents. In this review, we intend to debate different strategies of AgNP synthesis. Although, different preparation strategies are in use to synthesize AgNPs such as electron irradiation, optical device ablation, chemical reduction, organic procedures, and photochemical methods. However, biogenic processes are preferably used, as they are environment-friendly and economical. The review covers a comprehensive discussion on the biological activities of AgNPs, such as antimicrobial, anticancer anti-inflammatory, and anti-angiogenic potentials of AgNPs. The use of AgNPs in water treatment and disinfection has also been discussed in detail.
Collapse
|
10
|
Srivastava S, Usmani Z, Atanasov AG, Singh VK, Singh NP, Abdel-Azeem AM, Prasad R, Gupta G, Sharma M, Bhargava A. Biological Nanofactories: Using Living Forms for Metal Nanoparticle Synthesis. Mini Rev Med Chem 2021; 21:245-265. [PMID: 33198616 DOI: 10.2174/1389557520999201116163012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022]
Abstract
Metal nanoparticles are nanosized entities with dimensions of 1-100 nm that are increasingly in demand due to applications in diverse fields like electronics, sensing, environmental remediation, oil recovery and drug delivery. Metal nanoparticles possess large surface energy and properties different from bulk materials due to their small size, large surface area with free dangling bonds and higher reactivity. High cost and pernicious effects associated with the chemical and physical methods of nanoparticle synthesis are gradually paving the way for biological methods due to their eco-friendly nature. Considering the vast potentiality of microbes and plants as sources, biological synthesis can serve as a green technique for the synthesis of nanoparticles as an alternative to conventional methods. A number of reviews are available on green synthesis of nanoparticles but few have focused on covering the entire biological agents in this process. Therefore present paper describes the use of various living organisms like bacteria, fungi, algae, bryophytes and tracheophytes in the biological synthesis of metal nanoparticles, the mechanisms involved and the advantages associated therein.
Collapse
Affiliation(s)
- Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | | | | | - Ahmed M Abdel-Azeem
- Botany Department, Faculty of Science, University of Suez Canal, Ismailia, Egypt
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Govind Gupta
- Sage School of Agriculture, Sage University, Bhopal, India
| | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, India
| | - Atul Bhargava
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India
| |
Collapse
|
11
|
Gallo G, Schillaci D. Bacterial metal nanoparticles to develop new weapons against bacterial biofilms and infections. Appl Microbiol Biotechnol 2021; 105:5357-5366. [PMID: 34184105 DOI: 10.1007/s00253-021-11418-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023]
Abstract
The widespread use of antibiotics has resulted in the outbreak and spread of antibiotic-resistant pathogens. Bacterial antibiotic resistance may develop at cellular and community levels. In the latter case, it is based on tolerance which implicates the shift from a free-living form of life (i.e., planktonic) to a sessile multi-stratified community (i.e., biofilm). Metal nanoparticles (MNPs) have been shown to be promising candidates as antimicrobial agents. MNPs are able to interact with and penetrate bacterial biofilms, thus, resulting effective antibiofilm compounds. Another interesting aspect is the possibility of using plants, fungi, yeasts, and bacteria to obtain biogenic MNPs (BMNP). Bacteria are able to grow in presence of many different toxic heavy metal ions thanks to different metal resistance gene clusters that allow a variety of biochemical counters (formation of harmless complexes, efflux, precipitation, reduction, etc.). The formation of BMNPs by bacterial cells could be, in most cases, just a consequence of metal detoxification mechanisms. This review focuses on BMNPs from bacterial origin that may represent a good source of compounds with a broad spectrum of activity against common Gram-positive and Gram-negative pathogens and bacterial biofilms thereof. In particular, the state of art on BMNP synthesis by bacteria is presented and potential applications in the fight against biofilm-associated infections and resistant pathogens are highlighted. In addition, critical aspects on BMNP bacterial synthesis and utilization are commented.Key points• New antimicrobials to fight antibiotic-resistant pathogens are urgently needed.• Biogenic metal nanoparticles can efficiently hit biofilm-forming pathogens.• Metal-nanoparticle composition could confer specific antibiofilm activity.
Collapse
Affiliation(s)
- Giuseppe Gallo
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, ed. 16, 90128, Palermo, Italy.
| | - Domenico Schillaci
- Laboratory of Microbiology and Biologic Assays, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi, 32, 90123, Palermo, Italy
| |
Collapse
|
12
|
Yang J, Wang Q, Wang C, Yang R, Ahmed M, Kumaran S, Velu P, Li B. Pseudomonas aeruginosa synthesized silver nanoparticles inhibit cell proliferation and induce ROS mediated apoptosis in thyroid cancer cell line (TPC1). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:800-809. [PMID: 32432484 DOI: 10.1080/21691401.2019.1687495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We used cell-free culture filtrate of Pseudomonas aeruginosa as a reducing mediator of AgNO3 to silvernanoparticles (AgNPs) and possibly used as a potential anticancer agent against thyroid cancer cells (TPC1). The bio-generation of AgNPs was firmly established by taking a UV spectrum at 380-500 nm wavelength. The Fourier transform spectrum analysis reveals the association of alcohol, phenol and aromatic functional groups with P. aeruginosa synthesized AgNPs (Ps-AgNPs). By observing under transmission electron microscopy (TEM), the size and structure of the Ps-AgNPs were characterized as the size was 30-70 nm and spherical in shape. The concentration-dependent cytotoxicity of Ps-AgNPs on TPC1 cells was observed and IC50 value was calculated. The alteration of oxidative and antioxidant biomarkers in Ps-AgNPs treated cells were observed. The induced apoptosis was determined by staining the Ps-AgNPs treated cells with DCFH-DA, Rh-123 dye, Acridine Orange (AO) and ethidium bromide (EtBr). Increased level of intracellular reactive oxygen species (ROS) generation and decreased level of mitochondrial membrane potential was observed in Ps-AgNPs treated TPC1 cells. Moreover, the apoptotic morphological changes were explored, which indicates increased apoptosis by inducing cell membrane damage in Ps-AgNPs treated cells. This biogenic approach will enable an effective and significant improvement in nano-oncotherapy.
Collapse
Affiliation(s)
- Jinmei Yang
- Physical Examination Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiang Wang
- Physical Examination Center, The Fourth Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunxiao Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruiyi Yang
- Physical Examination Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mukhtar Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Subramanian Kumaran
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to Be University), Chennai, India
| | - Periyannan Velu
- Scigen Research and Innovation Pvt. Ltd, Periyar Technology Business Incubator, Thanjavur, India
| | - Bo Li
- Department of General Surgery, The Fourth Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
13
|
Mikhailova EO. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J Funct Biomater 2020; 11:E84. [PMID: 33255874 PMCID: PMC7711612 DOI: 10.3390/jfb11040084] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/08/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
This review is devoted to the medical application of silver nanoparticles produced as a result of "green" synthesis using various living organisms (bacteria, fungi, plants). The proposed mechanisms of AgNPs synthesis and the action mechanisms on target cells are highlighted.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of innovation management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
14
|
Wang Q, Li Q, Lin Y, Hou Y, Deng Z, Liu W, Wang H, Xia Z. Biochemical and genetic basis of cadmium biosorption by Enterobacter ludwigii LY6, isolated from industrial contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114637. [PMID: 32380392 DOI: 10.1016/j.envpol.2020.114637] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
In this study, a cadmium-tolerant bacterium, Enterobacter ludwigii LY6, was isolated from cadmium-contaminated soil in Shifang, Sichuan province, China. The cadmium chloride removal rate of the strain LY6 with a treatment of 100 mg/L cadmium chloride reached 56.0%. Scanning electron microscopy showed that exopolysaccharides (EPS) might be the main means of cadmium adsorption by the strain. X-ray powder diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS) analyses indicated that cadmium sulfide nanoparticles formed on the surface of bacteria cultured in a medium containing 100 mg/L cadmium chloride. In addition, the expression of several genes increased with the increase of the cadmium concentration in the medium, including the multiple antibiotic resistance proteins marA and marR, and the cold shock protein CspA. GO functions, such as the redox activity, respiratory chain and transport functions, and KEGG pathways involved in "bacterial chemotaxis" and "terpenoid backbone biosynthesis" were found to be closely related to bacterial cadmium tolerance and biosorption. This is the first report that E. ludwigii can reduce sulfate to form cadmium sulfide nanoparticles under high concentration cadmium exposure. The genes related to cadmium tolerance identified in this study lay a foundation for the genetic breeding of cadmium-tolerant strains.
Collapse
Affiliation(s)
- QiangFeng Wang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Yang Lin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Yong Hou
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Ziyuan Deng
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Wu Liu
- Sichuan Lanyue Science and Technology Co., Ltd., Chengdu, 610207, Sichuan, China
| | - Haitao Wang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - ZhongMei Xia
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China.
| |
Collapse
|
15
|
Simões MF, Ottoni CA, Antunes A. Biogenic Metal Nanoparticles: A New Approach to Detect Life on Mars? Life (Basel) 2020; 10:E28. [PMID: 32245046 PMCID: PMC7151574 DOI: 10.3390/life10030028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 01/02/2023] Open
Abstract
Metal nanoparticles (MNPs) have been extensively studied. They can be produced via different methods (physical, chemical, or biogenic), but biogenic synthesis has become more relevant, mainly for being referred by many as eco-friendly and more advantageous than others. Biogenic MNPs have been largely used in a wide variety of applications, from industry, to agriculture, to health sectors, among others. Even though they are increasingly researched and used, there is still space for exploring further applications and increasing their functionality and our understanding of their synthesis process. Here, we provide an overview of MNPs and biogenic MNPs, and we analyze the potential application of their formation process to astrobiology and the detection of life on Mars and other worlds. According to current knowledge, we suggest that they can be used as potential biosignatures in extra-terrestrial samples. We present the advantages and disadvantages of this approach, suggest further research, and propose its potential use for the search for life in future space exploration.
Collapse
Affiliation(s)
- Marta Filipa Simões
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, Hong Kong, China
| | | | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, Hong Kong, China
| |
Collapse
|
16
|
Abdallah OM, EL-Baghdady KZ, Khalil MMH, El Borhamy MI, Meligi GA. Antibacterial, antibiofilm and cytotoxic activities of biogenic polyvinyl alcohol-silver and chitosan-silver nanocomposites. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02050-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Mikhailov OV, Mikhailova EO. Elemental Silver Nanoparticles: Biosynthesis and Bio Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3177. [PMID: 31569794 PMCID: PMC6803994 DOI: 10.3390/ma12193177] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023]
Abstract
The data on the specifics of synthesis of elemental silver nanoparticles (Ag-NP) having various geometric shapes (pseudo spherical, prismatic, cubic, trigonal-pyramidal, etc.), obtained by using various biological methods, and their use in biology and medicine have been systematized and generalized. The review covers mainly publications published in the current 21st century. Bibliography: 262 references.
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia.
| | - Ekaterina O Mikhailova
- Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia.
| |
Collapse
|