1
|
Al-Ghamdi AR, Rahman S, Al-Wabli RI, Al-Mutairi MS, Rahman AFMM. Synthesis, Cytotoxicity, and Photophysical Investigations of 2-Amino-4,6-diphenylnicotinonitriles: An Experimental and Theoretical Study. Molecules 2024; 29:1808. [PMID: 38675628 PMCID: PMC11055175 DOI: 10.3390/molecules29081808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, we present a comprehensive investigation of 2-amino-4,6-diphenylnicotinonitriles (APNs, 1-6), including their synthesis, cytotoxicity against breast cancer cell lines, and photophysical properties. Compound 3 demonstrates exceptional cytotoxicity, surpassing the potency of Doxorubicin. The fluorescence spectra of the synthesized 1-6 in different solvents reveal solvent-dependent shifts in the emission maximum values, highlighting the influence of the solvent environment on their fluorescence properties. A quantum chemical TD-DFT analysis provides insights into the electronic structure and fluorescence behavior of 1-6, elucidating HOMO-LUMO energy gaps, electronegativity values, and dipole moments, contributing to a deeper understanding of their electronic properties and potential reactivity. These findings provide valuable knowledge for the development of APNs (1-6) as fluorescent sensors and potential anticancer agents.
Collapse
Affiliation(s)
- Alwah R. Al-Ghamdi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.R.A.-G.); (R.I.A.-W.); (M.S.A.-M.)
| | - Shofiur Rahman
- College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Reem I. Al-Wabli
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.R.A.-G.); (R.I.A.-W.); (M.S.A.-M.)
| | - Maha S. Al-Mutairi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.R.A.-G.); (R.I.A.-W.); (M.S.A.-M.)
| | - A. F. M. Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.R.A.-G.); (R.I.A.-W.); (M.S.A.-M.)
| |
Collapse
|
2
|
Abdellah IM, Eletmany MR, Abdelhamid AA, Alghamdi HS, Abdalla AN, Elhenawy AA, Latif FMAE. One-pot synthesis of novel poly-substituted 3-cyanopyridines: Molecular docking, antimicrobial, cytotoxicity, and DFT/TD-DFT studies. J Mol Struct 2023; 1289:135864. [DOI: 10.1016/j.molstruc.2023.135864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
3
|
Anwer KE, Hamza ZK, Ramadan RM. Synthesis, spectroscopic, DFT calculations, biological activity, SAR, and molecular docking studies of novel bioactive pyridine derivatives. Sci Rep 2023; 13:15598. [PMID: 37730837 PMCID: PMC10511440 DOI: 10.1038/s41598-023-42714-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
Enaminonitrile pyridine derivative was used as a precursor for preparation of fourteen heterocyclic compounds using both conventional thermal and microwave techniques. Diverse organic reagents, such as chloroacetyl chloride, acetic anhydride, chloroacetic acid, carbon disulfide, p-toluene sulfonyl chloride, maleic anhydride, phthalic anhydride, were used. The chemical formulae and structures of isolated derivatives were obtained using different analytical and spectroscopic techniques such as IR, 1H-, 13C-NMR as well as mass spectrometry. The spectroscopic analyses revealed diverse structure arrangements for the products. Molecular structure optimization of certain compounds were performed by the density functional theory (DFT/B3LYP) method and the basis set 6-31 G with double zeta plus polarization (d,p). The antimicrobial inhibition and the antioxidant activity of the reported compounds were screened. Compounds 5, 6, 11 and 13 exhibited the highest antibacterial inhibition, while compound 8 gave the highest scavenging activity (IC50 43.39 µg/ml) against the DPPH radical. Structure-activity relationship of the reported compounds were correlated with the data of antibacterial and the antioxidant activity. The global reactivity descriptors were also correlated with the biological properties of compounds. The molecular docking studies of reported compounds were investigated, and the analysis showed that the docked compounds have highly negative values for the functional binding scores. The binding interaction was found to be correlated with the substituent fragments of the compounds.
Collapse
Affiliation(s)
- Kurls E Anwer
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Zeinab K Hamza
- Food Toxicology and Contaminants Department, National Research Centre, Giza, Egypt
| | - Ramadan M Ramadan
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
4
|
Khanmohammadi A, Sadighian S, Ramazani A. Anti-plasmodial effects of quinine-loaded magnetic nanocomposite coated with heparin. Int J Pharm 2022; 628:122260. [DOI: 10.1016/j.ijpharm.2022.122260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 10/31/2022]
|
5
|
Rashidzadeh H, Tabatabaei Rezaei SJ, Danafar H, Ramazani A. Multifunctional pH-responsive nanogel for malaria and cancer treatment: Hitting two targets with one arrow. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Albratty M, Ahmad Alhazmi H. Novel pyridine and pyrimidine derivatives as promising anticancer agents: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
7
|
Tay NF, Duran M, Kayagil İ, Yurttaş L, Göger G, Göger F, Demirci F, Demirayak Ş. Synthesis, antimicrobial and antioxidant activities of pyridyl substituted thiazolyl triazole derivatives. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e191026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Fatih Demirci
- Anadolu University, Turkey; Eastern Mediterranean University, Turkey
| | | |
Collapse
|
8
|
Kafi‐Ahmadi L, Poursattar Marjani A, Nozad E. Ultrasonic‐assisted preparation of Co
3
O
4
and Eu‐doped Co
3
O
4
nanocatalysts and their application for solvent‐free synthesis of 2‐amino‐4
H
‐benzochromenes under microwave irradiation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Leila Kafi‐Ahmadi
- Department of Inorganic Chemistry, Faculty of Chemistry Urmia University Urmia Iran
| | | | - Ehsan Nozad
- Department of Organic Chemistry, Faculty of Chemistry Urmia University Urmia Iran
| |
Collapse
|
9
|
Majidi Arlan F, Poursattar Marjani A, Javahershenas R, Khalafy J. Recent developments in the synthesis of polysubstituted pyridines via multicomponent reactions using nanocatalysts. NEW J CHEM 2021. [DOI: 10.1039/d1nj01801a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review describes the evolution and application of active metal-based and heterometallic NPs as efficient heterogeneous catalysts for the synthesis of pyridine derivatives by multicomponent reactions in the last decade (2010–2020).
Collapse
Affiliation(s)
| | | | - Ramin Javahershenas
- Department of Organic Chemistry
- Faculty of Chemistry
- Urmia University
- Urmia
- Iran
| | - Jabbar Khalafy
- Department of Organic Chemistry
- Faculty of Chemistry
- Urmia University
- Urmia
- Iran
| |
Collapse
|
10
|
Mohammadi Ziarani G, Kheilkordi Z, Mohajer F, Badiei A, Luque R. Magnetically recoverable catalysts for the preparation of pyridine derivatives: an overview. RSC Adv 2021; 11:17456-17477. [PMID: 35479731 PMCID: PMC9033112 DOI: 10.1039/d1ra02418c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Magnetically recoverable nano-catalysts can be readily separated from the reaction medium using an external magnet. In recent years, chemistry researchers have employed them as catalysts in chemical reactions. The high surface area, simple preparation, and modification are among their major advantages. Pyridine derivatives are an important category of heterocyclic compounds, which show a wide range of excellent biological activities, including IKK-β inhibitors, anti-microbial agents, A2A adenosine receptor antagonists, inhibitors of HIV-1 integrase, anti-tumor, anti-inflammatory, and anti-Parkinsonism. Recently, the catalytic activity of magnetic nanoparticles was investigated in multicomponent reactions in the synthesis of pyridine derivatives, which is discussed in this review. Magnetically recoverable nano-catalysts can be readily separated from the reaction medium using an external magnet.![]()
Collapse
Affiliation(s)
| | - Zohreh Kheilkordi
- Department of Chemistry
- Faculty of Physics and Chemistry
- Alzahra University
- Tehran
- Iran
| | - Fatemeh Mohajer
- Department of Chemistry
- Faculty of Physics and Chemistry
- Alzahra University
- Tehran
- Iran
| | - Alireza Badiei
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
- Iran
| | - Rafael Luque
- Departamento de Quimica Organica
- Universidad de Cordoba
- Campus de Rabanales
- Edificio Marie Curie
- Córdoba
| |
Collapse
|
11
|
Farooq S, Ngaini Z, Mortadza NA. Microwave‐assisted Synthesis and Molecular Docking Study of Heteroaromatic Chalcone Derivatives as Potential Antibacterial Agents. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saba Farooq
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Kota Samarahan Sarawak 94300 Malaysia
| | - Zainab Ngaini
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Kota Samarahan Sarawak 94300 Malaysia
| | - Nur Arif Mortadza
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Kota Samarahan Sarawak 94300 Malaysia
| |
Collapse
|
12
|
Gracious SN, Kerru N, Maddila S, van Zyl WE, Jonnalagadda SB. Facile one-pot green synthesis of 2-amino-4 H-benzo[ g]chromenes in aqueous ethanol under ultrasound irradiation. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1761393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | - Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Suresh Maddila
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Werner E. van Zyl
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | | |
Collapse
|