1
|
Banerjee B, Ali A, Kumar S, Verma RK, Verma VK, Singh RC. Tellurium Containing Long Lived Emissive Fluorophore for Selective and Visual Detection of Picric Acid through Photo-Induced Electron Transfer. Chempluschem 2024; 89:e202400035. [PMID: 38552142 DOI: 10.1002/cplu.202400035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Indexed: 04/28/2024]
Abstract
A novel tellurium (Te) containing fluorophore, 1 and its nickel (2) and copper (3) containing metal organic complex (MOC) have been synthesized to exploit their structural and optical properties and to deploy these molecules as fluorescent probes for the selective and sensitive detection of picric acid (PA) over other commonly available nitro-explosives. Furthermore, density functional theory (DFT) and single crystal X-ray diffraction (SCXRD) techniques revealed the inclusion of "soft" Tellurium (Te) and "hard" Nitrogen (N), Oxygen (O) atoms in the molecular frameworks. Owing to the presence of electron rich "N" and "O" atoms along with "Te" in the molecular framework, 1 could efficiently and selectively sense PA with more than 80 % fluorescence quenching efficiency in organic medium and having detection limit of 4.60 μM. The selective detection of PA compared to other nitro-explosives follows a multi-mechanism based "turn-off" sensing which includes photo-induced electron transfer (PET), electrostatic (π-π stacking and π-anion/cation) interaction, intermolecular hydrogen bonding and inner filter effect (IFE). The test strip study also establishes the sensitivity of 1 for detection of PA.
Collapse
Affiliation(s)
- Bhaskar Banerjee
- Department of Forensic Science, Sharda University, Greater Noida, 201306, India
| | - Afsar Ali
- Department of Chemistry and Biochemistry, Sharda University, Greater Noida, 201306, India
| | - Sandeep Kumar
- Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | | | - Vinay Kumar Verma
- Department of Chemistry and Biochemistry, Sharda University, Greater Noida, 201306, India
| | - Ram Chandra Singh
- Department of Physics, Sharda University, Greater Noida, 201306, India
| |
Collapse
|
2
|
Kim W, Kim W, Park H, Hong J, Lee W, Park J. Ultrasensitive Cd 2+ detection based on biomimetic magneto-Au nano-urchin SERS chip fabricated using a 3D printed magnetic mold. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123427. [PMID: 37741100 DOI: 10.1016/j.saa.2023.123427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
Cadmium is a representative carcinogenic heavy metal. Because of the long biological half-life of cadmium, it is critical to prevent and detect cadmium inflow into the body. In this study, we developed the biomimetic magneto-gold nano-urchin (MGNU)-based surface-enhanced Raman scattering (SERS) chip for ultrasensitive detection of cadmium. The MGNU SERS chip was facilely fabricated using three-dimensional (3D) printed magnetic molds. The 3D printed magnetic molds were designed for contributing to (1) making hydrophobic/hydrophilic areas and (2) magnetic SERS enhancement by attracting the MGNUs. To validate the performance of the MGNU SERS chip, we conducted electromagnetic simulations and measurements of SERS efficiencies. Consequently, we detected cadmium ions up to 1.33 pM in distilled water. Moreover, we succeeded to detect cadmium ions in the real environmental samples up to 2.76 pM in the tap water and 14.21 pM in the human blood plasma, respectively. The MGNU SERS chip is a powerful SERS substrate that can be used in various spectrometer-based sensing platforms.
Collapse
Affiliation(s)
- Woong Kim
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana and Champaign, Urbana, IL 61801, USA
| | - Woochang Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyunjun Park
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Junghwa Hong
- Department of Control and Instrumentation Engineering, Korea University, Sejong 30019, South Korea.
| | - Wonseok Lee
- Department of Electrical Engineering, Korea National University of Transportation, Chungju 27469, South Korea.
| | - Jinsung Park
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
3
|
Kouser R, Yasir Khan H, Arjmand F, Tabassum S. A highly selective “on-off” fluorescent sensor for detection of Fe3+ ion in protein and aqueous media: Synthesis, Structural characterization, and Computational studies. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
4
|
Loa JDA, Cruz-Rodríguez IA, Rojas-Avelizapa NG. Colorimetric Detection of Metals Using CdS-NPs Synthesized by an Organic Extract of Aspergillus niger. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04341-z. [PMID: 36656535 DOI: 10.1007/s12010-023-04341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
The use of cadmium sulfide nanoparticles (CdS-NPs) synthesized by fungi presents highly stable chemical and optical characteristics; this makes them a promising alternative for development of colorimetric methods for metal detection. Moreover, application of CdS-NPs is challenging due to the biological material used to carry out synthesis and coating is highly diverse; therefore, it is necessary to evaluate if such components are present in the biological material. Thus, the objective of this work was to detect metallic ions in synthetic water samples using CdS-NPs synthesized by the extract of Aspergillus niger. The conditions to produce fungal extracts were determined through a factorial design 23; additionally, biomolecules involved in metallic ions detection, synthesis, and coating of CdS-NPs were quantified; the studied biomolecules are NADH, sulfhydryl groups, proteins, and ferric reducing antioxidants (FRAP). CdS-NPs synthesized in this study were characterized by spectrophotometry, zeta potential, and high-resolution transmission electron microscopy (HRTEM). Finally, detection capacity of metallic ions in synthetic water samples was evaluated. It was proved that the methanolic extract of Aspergillus niger obtained under established conditions has the necessary components for both synthesis and coating of CdS-NPs, as well as detection of metallic ions because it was possible to synthesize CdS-NPs with a hexagonal crystalline structure with a length of 2.56 ± 0.50 nm which were able to detect Pb2+, Cr6+, and Fe3+ at pH 4 and Co2+ at pH 8.
Collapse
Affiliation(s)
- J D A Loa
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Querétaro, Instituto Politécnico Nacional, Qro. CP. 76090, Querétaro, México
| | - I A Cruz-Rodríguez
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Querétaro, Instituto Politécnico Nacional, Qro. CP. 76090, Querétaro, México
| | - N G Rojas-Avelizapa
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Querétaro, Instituto Politécnico Nacional, Qro. CP. 76090, Querétaro, México.
| |
Collapse
|
5
|
Purushothaman P, Karpagam S. Thiophene-Appended Benzothiazole Compounds for Ratiometric Detection of Copper and Cadmium Ions with Comparative Density Functional Theory Studies and Their Application in Real-Time Samples. ACS OMEGA 2022; 7:41361-41369. [PMID: 36406525 PMCID: PMC9670728 DOI: 10.1021/acsomega.2c05157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
A thirst for the development of a simple fluorescence probe for enhanced sensing application has been achieved by synthesizing a stupendous thiophene-appended benzothiazole-conjugated compound L2. The synthesized compound L2 was characterized using nuclear magnetic resonance and mass spectrometry techniques. Furthermore, a photophysical property of L1 and L2 reveals the enhanced emission spectrum of L2 because of a restricted spin-orbital coupling as a result of increased conjugation compared to the ligand L1. Therefore, comparative studies were undertaken for L1 and L2. Henceforth, L2 was deployed for the ratiometric detection of Cd2+ ions in THF:water and L1 for the detection of Cu2+ ions in THF medium. The chemosensor L2 shows an outstanding water tolerance up to 60% and is stable between pH 2 and 7. This level of water tolerance and stability make L2 a suitable probe for analyzing real-time and biological samples. While the cadmium ion was added to L2, there was a significant red shift in emission from 496 to 549 nm, which indicates the controlled ICT due to complex formation. The metal-ligand complexation was also confirmed by noticing a decreased band gap of metal complex compared to the ligand as calculated using Tauc's plot with solid-phase UV data. The stoichiometric ratio was obtained by Job's plot that exhibited a 1:1 ratio of L2 and Cd2+ ions, and the limit of detection (LOD) was found to be 2.25 nM by the photoluminescence spectroscopic technique. The fluorescence lifetime of both L2 and L2-Cd2+ was found to be 58.3 ps and 0.147 ns, respectively. Alongside, the colorimetric-assisted ratiometric detection of Cu2+ by L1 with 1:2 stoichiometric ratio having an LOD of 1.06 × 10-7 M was also performed. Furthermore, the practical applicability of the probe L2 in sensing cadmium was tested in sewage water and vegetable extract; the recovery was approximately 98 and 99%, respectively. The experimental data were supported by theoretical investigation of structures of L1, L2, L1-Cu2+ , and L2-Cd2+ , complex formation, charge transfer mechanism, and band gap measurements done by quantum chemical density functional theory calculations.
Collapse
|
6
|
Aydin Z, Akın Ş, Çenet EN, Keskinateş M, Akbulut A, Keleş H, Keleş M. Two novel enzyme-free colorimetric sensors for the detection of glyphosate in real samples. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Hu S, Yang J, Liao A, Lin Y, Liang S. Fluorescent indicators for live-cell and in vitro detection of inorganic cadmium dynamics. J Fluoresc 2022; 32:1397-1404. [PMID: 35438371 DOI: 10.1007/s10895-022-02919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
Cadmium contamination is a severe threat to the environment and food safety. Thus, there is an urgent need to develop highly sensitive and selective cadmium detection tools. The engineered fluorescent indicator is a powerful tool for the rapid detection of inorganic cadmium in the environment. In this study, the development of yellow fluorescent indicators of cadmium chloride by inserting a fluorescent protein at different positions of the high cadmium-specific repressor and optimizing the flexible linker between the connection points is reported. These indicators provide a fast, sensitive, specific, high dynamic range, and real-time readout of cadmium ion dynamics in solution. The excitation and emission wavelength of this indicator used in this work are 420/485 and 528 nm, respectively. Fluorescent indicators N0C0/N1C1 showed a linear response to cadmium concentration within the range from 10/30 to 50/100 nM and with a detection limit of 10/33 nM under optimal condition. Escherichia coli cells containing the indicator were used to further study the response of cadmium ion concentration in living cells. E. coli N1C1 could respond to different concentrations of cadmium ions. This study provides a rapid and straightforward method for cadmium ion detection in vitro and the potential for biological imaging.
Collapse
Affiliation(s)
- Shulin Hu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China.,School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China
| | - Jun Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China.,School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China
| | - Anqi Liao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China.,School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China.,School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China
| | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China. .,School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China.
| |
Collapse
|
8
|
Aydin Z, Keleş M. A reaction-based system for the colorimetric detection of glyphosate in real samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120501. [PMID: 34688062 DOI: 10.1016/j.saa.2021.120501] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate is widely used herbicides and causes several diseases in humans. Therefore, the detection of glyphosate is curial and urgent. Studies on the detection of glyphosate in literature are often based on inhibition of the enzyme acetylcholinesterase. In this study, we developed two simple colorimetric sensors, BP-Cl and CP-Cl, by linking 3-chloro-4-methylpyridine with 4-(dimethylamino)cinnamaldehyde or 4-(dimethylamino)benzaldehyde in a one-step reaction. The colorimetric and optical sensing properties of these compounds were investigated by the naked-eye and UV-Vis spectrophotometer in ACN/HEPES buffer (5 mM pH 8.0, 1:1 v/v). The sensors displayed high sensitivity and selectivity for glyphosate by color changes, which ranged from colorless to yellow for BP-Cl and yellow to orange for CP-Cl. The detection limits of BP-Cl and CP-Cl by the naked-eye detection were found as 15 µM and 10 µM. On the other hand, the detection limits of BP-Cl and CP-Cl via UV-Vis measurements were calculated as 0.847 µM and 1.23 µM, respectively. Moreover, the sensors were able to monitor glyphosate in water samples using the naked-eye, UV-Vis spectroscopy, and filter paper strips.
Collapse
Affiliation(s)
- Ziya Aydin
- Vocational School of Technical Sciences, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey; Scientific and Technological Research & Application Center, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey.
| | - Mustafa Keleş
- Department of Chemistry, Faculty of Arts and Sciences, Osmaniye Korkut Ata University, Osmaniye, Turkey
| |
Collapse
|
9
|
Shi CT, Huang ZY, Wu AB, Hu YX, Wang NC, Zhang Y, Shu WM, Yu WC. Recent progress in cadmium fluorescent and colorimetric probes. RSC Adv 2021; 11:29632-29660. [PMID: 35479541 PMCID: PMC9040829 DOI: 10.1039/d1ra05048f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Cadmium is a heavy metal which exists widely in industrial and agricultural production and can induce a variety of diseases in organisms. Therefore, its detection is of great significance in the fields of biology, environment and medicine. Fluorescent probe has been a powerful tool for cadmium detection because of its convenience, sensitivity, and bioimaging capability. In this paper, we reviewed 98 literatures on cadmium fluorescent sensors reported from 2017 to 2021, classified them according to different fluorophores, elaborated the probe design, application characteristics and recognition mode, summarized and prospected the development of cadmium fluorescent and colorimetric probes. We hope to provide some help for researchers to design cadmium fluorescent probes with higher selectivity, sensitivity and practicability. Cadmium is a heavy metal which exists widely in industrial and agricultural production and can induce a variety of diseases in organisms.![]()
Collapse
Affiliation(s)
- Chun-Tian Shi
- School of Chemistry and Environmental Engineering, Yangtze University Jingzhou Hubei People's Republic of China .,Unconventional Oil and Gas Collaborative Innovation Center, Yangtze University Jingzhou Hubei People's Republic of China
| | - Zhi-Yu Huang
- Key Laboratory of Textile Fibers and Products, Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University Wuhan Hubei People's Republic of China
| | - Ai-Bin Wu
- School of Chemistry and Environmental Engineering, Yangtze University Jingzhou Hubei People's Republic of China .,Unconventional Oil and Gas Collaborative Innovation Center, Yangtze University Jingzhou Hubei People's Republic of China
| | - Yan-Xiong Hu
- School of Chemistry and Environmental Engineering, Yangtze University Jingzhou Hubei People's Republic of China
| | - Ning-Chen Wang
- School of Chemistry and Environmental Engineering, Yangtze University Jingzhou Hubei People's Republic of China
| | - Ying Zhang
- School of Chemistry and Environmental Engineering, Yangtze University Jingzhou Hubei People's Republic of China
| | - Wen-Ming Shu
- School of Chemistry and Environmental Engineering, Yangtze University Jingzhou Hubei People's Republic of China .,Unconventional Oil and Gas Collaborative Innovation Center, Yangtze University Jingzhou Hubei People's Republic of China
| | - Wei-Chu Yu
- School of Chemistry and Environmental Engineering, Yangtze University Jingzhou Hubei People's Republic of China .,Unconventional Oil and Gas Collaborative Innovation Center, Yangtze University Jingzhou Hubei People's Republic of China
| |
Collapse
|
10
|
Aydin Z. A novel phenanthroline-based colorimetric turn-off optical sensor for Zn2+. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|