1
|
Andreani T, Cheng R, Elbadri K, Ferro C, Menezes T, Dos Santos MR, Pereira CM, Santos HA. Natural compounds-based nanomedicines for cancer treatment: Future directions and challenges. Drug Deliv Transl Res 2024; 14:2845-2916. [PMID: 39003425 PMCID: PMC11385056 DOI: 10.1007/s13346-024-01649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/15/2024]
Abstract
Several efforts have been extensively accomplished for the amelioration of the cancer treatments using different types of new drugs and less invasives therapies in comparison with the traditional therapeutic modalities, which are widely associated with numerous drawbacks, such as drug resistance, non-selectivity and high costs, restraining their clinical response. The application of natural compounds for the prevention and treatment of different cancer cells has attracted significant attention from the pharmaceuticals and scientific communities over the past decades. Although the use of nanotechnology in cancer therapy is still in the preliminary stages, the application of nanotherapeutics has demonstrated to decrease the various limitations related to the use of natural compounds, such as physical/chemical instability, poor aqueous solubility, and low bioavailability. Despite the nanotechnology has emerged as a promise to improve the bioavailability of the natural compounds, there are still limited clinical trials performed for their application with various challenges required for the pre-clinical and clinical trials, such as production at an industrial level, assurance of nanotherapeutics long-term stability, physiological barriers and safety and regulatory issues. This review highlights the most recent advances in the nanocarriers for natural compounds secreted from plants, bacteria, fungi, and marine organisms, as well as their role on cell signaling pathways for anticancer treatments. Additionally, the clinical status and the main challenges regarding the natural compounds loaded in nanocarriers for clinical applications were also discussed.
Collapse
Affiliation(s)
- Tatiana Andreani
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
- GreenUPorto-Sustainable Agrifood Production Research Centre & Inov4Agro, Department of Biology, Faculty of Sciences of University of Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Ruoyu Cheng
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Khalil Elbadri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Claudio Ferro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Thacilla Menezes
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Mayara R Dos Santos
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Carlos M Pereira
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
2
|
Eichenauer E, Saukel J, Glasl S. VOLKSMED Database: A Source for Forgotten Wound Healing Plants in Austrian Folk Medicine. PLANTA MEDICA 2024; 90:498-511. [PMID: 38843790 DOI: 10.1055/a-2225-7545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The global increase in the incidence of wounds is concerning and fuels the search for new treatment options. The use of traditional medicinal plants in wound healing represents an appreciated available therapeutic possibility. This work introduces the VOLKSMED database, which contains plants and other materials used in Austrian folk medicine, either as monographs or mixtures. This work focuses on the monographs of the database. Concerning wound healing, Hypericum sp., Arnica montana, Calendula officinalis, Plantago sp., and Malva sp. are the most commonly used plants. The focus of this paper is set on selected lesser-known plants (Abies alba, Anthyllis vulneraria, Brassica sp., Gentiana sp., Larix decidua, Picea abies, Sambucus sp., Sanicula europaea) and their status quo in literature concerning wound healing. A systematic search using the databases SciFinder, SCOPUS, and PubMed yielded substantial evidence for the wound healing potential of Brassica sp., Gentiana sp., the Pinaceae A. abies, L. decidua, and P. abies, as well as Sambucus nigra. In vivo and clinical studies substantiate their use in Austrian folk medicine. According to the literature, especially A. vulneraria, Sambucus racemosa, and S. europaea would be worth investigating in-depth since data concerning their wound healing effects - even though scarce - are convincing. In conclusion, the VOLKSMED database contains promising opportunities for further treatment options in the field of wound healing. Future research should consider the listed plants to support their traditional use in Austrian folk medicine and possibly promote the implementation of old knowledge in modern medicine.
Collapse
Affiliation(s)
- Elisabeth Eichenauer
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Austria
| | - Johannes Saukel
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Austria
| | - Sabine Glasl
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Austria
| |
Collapse
|
3
|
Murugan K, Subashini R, Sathiskumar U, Odukkathil G. Calotropis procera flower extract for the synthesis of double edged octahedral α-Fe 2O 3 nanoparticles via a greener approach: an insight into its structure property relationship for Escherichia coli. NEW J CHEM 2023; 47:11584-11593. [DOI: 10.1039/d3nj01044a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Urinary tract infection caused by Escherichia coli (E. coli) is regarded as one of the most serious issues confronting humans worldwide.
Collapse
Affiliation(s)
- Karuvelan Murugan
- Department of Biomedical Engineering, Sri Sivasubramaniya Nadar (SSN) College of Engineering, Kalavakkam, India
- Department of Microbiology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India
| | - Rajakannu Subashini
- Department of Biomedical Engineering, Sri Sivasubramaniya Nadar (SSN) College of Engineering, Kalavakkam, India
| | - Udayadasan Sathiskumar
- Science & Humanities, Department of Chemistry, Chennai Institute of Technology (CIT), Chennai, India
| | - Greeshma Odukkathil
- Centre for Clean Environment, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
4
|
Majeed S, Mohd Rozi NAB, Danish M, Mohamad Ibrahim M, Joel EL. Invitro apoptosis and molecular response of engineered green iron oxide nanoparticles with l-arginine in MD-MBA 231 breast cancer cells. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Thakur R, Arora V. Comprehensive review on polymeric and metal nanoparticles: possible therapeutic avenues. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2105331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Raneev Thakur
- UIPS, Chandigarh University Mohali, Mohali, Punjab, India
- Government College of Pharmacy Rohru, Shimla, HP, India
| | - Vimal Arora
- UIPS, Chandigarh University Mohali, Mohali, Punjab, India
| |
Collapse
|
6
|
DEMİRBOLAT GM, ERDOĞAN Ö, COŞKUN GP, ÇEVİK Ö. PEG4000 modified liposomes enhance the solubility of quercetin and improve the liposome functionality: in vitro characterization and the cellular efficacy. Turk J Chem 2022; 46:1011-1023. [PMID: 37538767 PMCID: PMC10395731 DOI: 10.55730/1300-0527.3411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 08/05/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Quercetin, a multifunctional therapeutic agent, is used in various types of cancer. However, its therapeutic effect is limited by virtue of poorly aqueous solubility and instability in the physiological medium. To overcome these limitations, we aimed (i) to design quercetin loaded liposomes with unlinked-PEG4000 with regard to not only surface modification but also solubility enhancement, and (ii) to investigate the antineoplastic effects on HeLa cells. PEG4000 increased the quercetin solubility 2.2 fold. PEG4000 modified liposomes displayed small particle size (254 ± 69 nm), low polydispersity index (0.236 ± 0.018), favorable zeta potential (-35.4 ± 0.6 mV), high quercetin encapsulation efficiency (87.6 ± 5.6%), and drug loading (22.2 ± 6.9%). The homogeneity and particle size of stable PEGylated liposomes were proved by transmission electron microscopy. The drug release was reached up to 65.1 ± 3.8% in 6 h. The IC50 value of quercetin loaded PEGylated liposomes was 16.3 μg/mL on HeLa cells, while that of quercetin was 88.3 μg/mL. PEGylated liposomes remarkably hampered the adherence and colony formation ability of cells according to crystal violet staining tests. The convenience of PEGylated liposomes for the parenteral application was stated by the hemolysis assay. The high-throughput screening assays based on AO/PI staining proved the drastic decrease of viable cell count. Moreover, qPCR tests based on gene expression levels revealed that the quercetin loaded PEGylated liposomes treatment could be more effective than free quercetin on the mitochondrial apoptosis of HeLa cells. These promising results allow considering further in vivo studies for efficient cancer treatment with quercetin loaded PEG4000 modified liposomes.
Collapse
Affiliation(s)
- Gülen Melike DEMİRBOLAT
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, İstanbul,
Turkey
| | - Ömer ERDOĞAN
- Department of Biochemistry, School of Medicine, Aydın Adnan Menderes University, Aydın,
Turkey
| | - Göknil Pelin COŞKUN
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, İstanbul,
Turkey
| | - Özge ÇEVİK
- Department of Biochemistry, School of Medicine, Aydın Adnan Menderes University, Aydın,
Turkey
| |
Collapse
|