1
|
Chen JP, Zhou L, Gong JS, Wang NK, Miao FF, Su C, Gao XL, Xu GQ, Shi JS, Xu ZH. Semiautomated design and soluble expression of a chimeric antigen TbpAB01 from Glaesserella parasuis. Biotechnol Bioeng 2024; 121:2163-2174. [PMID: 38595326 DOI: 10.1002/bit.28710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Pathogenic bacterial membrane proteins (MPs) are a class of vaccine and antibiotic development targets with widespread clinical application. However, the inherent hydrophobicity of MPs poses a challenge to fold correctly in living cells. Herein, we present a comprehensive method to improve the soluble form of MP antigen by rationally designing multi-epitope chimeric antigen (ChA) and screening two classes of protein-assisting folding element. The study uses a homologous protein antigen as a functional scaffold to generate a ChA possessing four epitopes from transferrin-binding protein A of Glaesserella parasuis. Our engineered strain, which co-expresses P17 tagged-ChA and endogenous chaperones groEL-ES, yields a 0.346 g/L highly soluble ChA with the property of HPS-positive serum reaction. Moreover, the protein titer of ChA reaches 4.27 g/L with >90% soluble proportion in 5-L bioreactor, which is the highest titer reported so far. The results highlight a timely approach to design and improve the soluble expression of MP antigen in industrially viable applications.
Collapse
Affiliation(s)
- Jin-Ping Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People's Republic of China
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
| | - Lin Zhou
- Jiangsu Nannong High-Tech Co., Ltd., Jiangyin, People's Republic of China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People's Republic of China
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
| | - Nan-Kai Wang
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Fen-Fang Miao
- Jiangsu Nannong High-Tech Co., Ltd., Jiangyin, People's Republic of China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People's Republic of China
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
| | - Xin-Le Gao
- Jiangsu Nannong High-Tech Co., Ltd., Jiangyin, People's Republic of China
| | - Guo-Qiang Xu
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People's Republic of China
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
| | - Zheng-Hong Xu
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
- College of Biomass Science and Engineering, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Greenawalt AN, Stoudenmire J, Lundquist K, Noinaj N, Gumbart JC, Cornelissen CN. Point Mutations in TbpA Abrogate Human Transferrin Binding in Neisseria gonorrhoeae. Infect Immun 2022; 90:e0041422. [PMID: 36321833 PMCID: PMC9670983 DOI: 10.1128/iai.00414-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
TonB-dependent transporters (TDTs) are essential proteins for metal acquisition, an important step in the growth and pathogenesis of many pathogens, including Neisseria gonorrhoeae, the causative agent of gonorrhea. There is currently no available vaccine for gonorrhea; TDTs are being investigated as vaccine candidates because they are highly conserved and expressed in vivo. Transferrin binding protein A (TbpA) is an essential virulence factor in the initiation of experimental infection in human males and functions by acquiring iron upon binding to host transferrin (human transferrin [hTf]). The loop 3 helix (L3H) is a helix finger that inserts into the hTf C-lobe and is required for hTf binding and subsequent iron acquisition. This study identified and characterized the first TbpA single-point substitutions resulting in significantly decreased hTf binding and iron acquisition, suggesting that the helix structure is more important than charge for hTf binding and utilization. The tbpA D355P ΔtbpB and tbpA A356P ΔtbpB mutants demonstrated significantly reduced hTf binding and impaired iron uptake from Fe-loaded hTf; however, only the tbpA A356P ΔtbpB mutant was able to grow when hTf was the sole source of iron. The expression of tbpB was able to restore function in all tbpA mutants. These results implicate both D355 and A356 in the key binding, extraction, and uptake functions of gonococcal TbpA.
Collapse
Affiliation(s)
- Ashley Nicole Greenawalt
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Julie Stoudenmire
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Karl Lundquist
- Markey Center for Structural Biology, Department of Biological Science, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Science, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Cynthia Nau Cornelissen
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Stoudenmire JL, Greenawalt AN, Cornelissen CN. Stealthy microbes: How Neisseria gonorrhoeae hijacks bulwarked iron during infection. Front Cell Infect Microbiol 2022; 12:1017348. [PMID: 36189345 PMCID: PMC9519893 DOI: 10.3389/fcimb.2022.1017348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Transition metals are essential for metalloprotein function among all domains of life. Humans utilize nutritional immunity to limit bacterial infections, employing metalloproteins such as hemoglobin, transferrin, and lactoferrin across a variety of physiological niches to sequester iron from invading bacteria. Consequently, some bacteria have evolved mechanisms to pirate the sequestered metals and thrive in these metal-restricted environments. Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhea, causes devastating disease worldwide and is an example of a bacterium capable of circumventing human nutritional immunity. Via production of specific outer-membrane metallotransporters, N. gonorrhoeae is capable of extracting iron directly from human innate immunity metalloproteins. This review focuses on the function and expression of each metalloprotein at gonococcal infection sites, as well as what is known about how the gonococcus accesses bound iron.
Collapse
Affiliation(s)
| | | | - Cynthia Nau Cornelissen
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
4
|
Maurakis SA, Stoudenmire JL, Rymer JK, Chazin WJ, Cornelissen CN. Mutagenesis of the Loop 3 α-Helix of Neisseria gonorrhoeae TdfJ Inhibits S100A7 Binding and Utilization. mBio 2022; 13:e0167022. [PMID: 35862777 PMCID: PMC9426574 DOI: 10.1128/mbio.01670-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae causes the sexually transmitted infection (STI) gonorrhea, which afflicts over 80 million people each year. No vaccine is available to prevent gonorrhea. The pathogen alters the expression and antigenic presentation of key surface molecules, making the identification of suitable vaccine targets difficult. The human host utilizes metal-binding proteins to limit free essential transition metal ions available to invading pathogens, limiting their infective potential, a process called nutritional immunity. To overcome this, N. gonorrhoeae employs outer membrane TonB-dependent transporters (TdTs) that bind host nutritional immunity proteins and strip them of their metal cargo. The TdTs are well conserved, and some play key roles in establishing infections, making them promising vaccine targets. One TdT, TdfJ, recognizes human S100A7, a zinc-binding protein that inhibits the proliferation of other pathogens via zinc sequestration. N. gonorrhoeae uses TdfJ to strip and internalize zinc from S100A7. TdfJ contains a conserved α-helix finger in extracellular loop 3; a similar α-helix in loop 3 of another gonococcal TdT, TbpA, plays a critical role in the interaction between TbpA and human transferrin. Therefore, we hypothesized that the TdfJ loop 3 helix (L3H) participates in interactions with S100A7. We determined the affinity between wild-type TdfJ and S100A7 and then generated a series of mutations in the TdfJ L3H. Our study revealed that mutagenesis of key residues within the L3H reduced S100A7 binding and zinc piracy by the gonococcus, with profound effects seen with substitutions at residues K261 and R262. Taken together, these data suggest a key role for the TdfJ L3H in subverting host metal restriction. IMPORTANCE Gonorrhea is a global threat to public health due to the increasing incidence of antimicrobial drug resistance, rising treatment costs, and lack of a protective vaccine. The prospect of untreatable gonococcal infections has spurred efforts to identify targets for novel therapeutic and prevention strategies, and members of the family of outer membrane TonB-dependent metal transporters have emerged as promising candidates. These conserved surface molecules play a critical role in establishing infection by facilitating nutrient uptake in the human host that dedicates considerable efforts to restricting nutrient availability. In this study, we characterized the binding interaction between the zinc importer TdfJ and its human zinc source, S100A7. We went on to identify a key region of TdfJ that mediates this interaction. With a more thorough understanding of the intricate relationships between these bacterial nutrient receptors and their host nutrient sources, we may help pave the way toward identifying effective prophylaxis and treatment for an important human disease.
Collapse
Affiliation(s)
- Stavros A. Maurakis
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Julie L. Stoudenmire
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Jeffrey K. Rymer
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Walter J. Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|