1
|
Mirbahari SN, Fatemi N, Savabkar S, Chaleshi V, Zali N, Taleghani MY, Mirzaei E, Rejali L, Moghadam PK, Mojarad EN. Unmasking early colorectal cancer clues: in silico and in vitro investigation of downregulated IGF2, SOCS1, MLH1, and CACNA1G in SSA polyps. Mol Biol Rep 2024; 51:764. [PMID: 38874740 PMCID: PMC11178608 DOI: 10.1007/s11033-024-09683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND AND AIM Colorectal cancer (CRC) originates from pre-existing polyps in the colon. The development of different subtypes of CRC is influenced by various genetic and epigenetic characteristics. CpG island methylator phenotype (CIMP) is found in about 15-20% of sporadic CRCs and is associated with hypermethylation of certain gene promoters. This study aims to find prognostic genes and compare their expression and methylation status as potential biomarkers in patients with serrated sessile adenomas/polyps (SSAP) and CRC, in order to evaluate which, one is a better predictor of disease. METHOD This study employed a multi-phase approach to investigate genes associated with CRC and SSAP. Initially, two gene expression datasets were analyzed using R and Limma package to identify differentially expressed genes (DEGs). Venn diagram analysis further refined the selection, revealing four genes from the Weissenberg panel with significant changes. These genes, underwent thorough in silico evaluations. Once confirmed, they proceeded to wet lab experimentation, focusing on expression and methylation status. This comprehensive methodology ensured a robust examination of the genes involved in CRC and SSAP. RESULT This study identified cancer-specific genes, with 8,351 and 1,769 genes specifically down-regulated in SSAP and CRC tissues, respectively. The down-regulated genes were associated with cell adhesion, negative regulation of cell proliferation, and drug response. Four highly downregulated genes in the Weissenberg panel, including CACNA1G, IGF2, MLH1, and SOCS1. In vitro analysis showed that they are hypermethylated in both SSAP and CRC samples while their expressions decreased only in CRC samples. CONCLUSION This suggests that the decrease in gene expression could help determine whether a polyp will become cancerous. Using both methylation status and gene expression status of genes in the Weissenberg panel in prognostic tests may lead to better prognoses for patients.
Collapse
Affiliation(s)
- Seyedeh Nasim Mirbahari
- Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Savabkar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Chaleshi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Yaghoob Taleghani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mirzaei
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pardis Ketabi Moghadam
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P. O. Box: 1985717413, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P. O. Box: 1985717413, Tehran, Iran.
- Department of Surgery, Leiden University Medical Center, P.O. Box 2333 ZA, Leiden, Netherlands.
| |
Collapse
|
2
|
Chung J, Akter S, Han S, Shin Y, Choi TG, Kang I, Kim SS. Diagnosis by Volatile Organic Compounds in Exhaled Breath in Exhaled Breath from Patients with Gastric and Colorectal Cancers. Int J Mol Sci 2022; 24:129. [PMID: 36613569 PMCID: PMC9820758 DOI: 10.3390/ijms24010129] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
One in three cancer deaths worldwide are caused by gastric and colorectal cancer malignancies. Although the incidence and fatality rates differ significantly from country to country, the rates of these cancers in East Asian nations such as South Korea and Japan have been increasing each year. Above all, the biggest danger of this disease is how challenging it is to recognize in its early stages. Moreover, most patients with these cancers do not present with any disease symptoms before receiving a definitive diagnosis. Currently, volatile organic compounds (VOCs) are being used for the early prediction of several other diseases, and research has been carried out on these applications. Exhaled VOCs from patients possess remarkable potential as novel biomarkers, and their analysis could be transformative in the prevention and early diagnosis of colon and stomach cancers. VOCs have been spotlighted in recent studies due to their ease of use. Diagnosis on the basis of patient VOC analysis takes less time than methods using gas chromatography, and results in the literature demonstrate that it is possible to determine whether a patient has certain diseases by using organic compounds in their breath as indicators. This study describes how VOCs can be used to precisely detect cancers; as more data are accumulated, the accuracy of this method will increase, and it can be applied in more fields.
Collapse
Affiliation(s)
- Jinwook Chung
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Chen R, Wang L, Zhao Q, Li Z, Chen M, Lian G, Zhang J. Platelet-to-lymphocyte ratio and C-reactive protein as markers for colorectal polyp histological type. BMC Cancer 2021; 21:556. [PMID: 34001040 PMCID: PMC8127289 DOI: 10.1186/s12885-021-08221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/20/2021] [Indexed: 01/19/2023] Open
Abstract
Background The platelet-to-lymphocyte ratio (PLR) and C-reactive protein (CRP) level are markers that have been reported to predict the histological type of various tumors, and here, we evaluated their utility in predicting colorectal polyp histological types. Methods We retrospectively reviewed 172 patients with colorectal polyps who underwent endoscopic polypectomy. The associations between histological type and clinicopathologic parameters were assessed by multivariate analysis. Results The optimal PLR and CRP cut-off values were 113.32 and 0.39, respectively. The PLR (P = 0.002) and CRP (P = 0.009) values were associated with the histological type according to the univariate analysis, whereas low PLR (P ≤ 0.001) and CRP (P = 0.017) values were independent risk factors in the multivariate analysis together with maximum tumor diameter (P ≤ 0.001) and tumor number (P = 0.0014). Conclusions Preoperative PLR and CRP are correlated with the colorectal polyp histological type.
Collapse
Affiliation(s)
- Rui Chen
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, 324 Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Liguang Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qi Zhao
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, 324 Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Zhen Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, 324 Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Man Chen
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Guodong Lian
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Junyong Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, 324 Jingwu Road, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Yu B, Zhang M, Chen J, Wang L, Peng X, Zhang X, Wang H, Wang A, Zhao D, Pang D, OuYang H, Tang X. Abnormality of hepatic triglyceride metabolism in Apc Min/+ mice with colon cancer cachexia. Life Sci 2019; 227:201-211. [PMID: 31002917 DOI: 10.1016/j.lfs.2019.04.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023]
Abstract
AIMS Colorectal cancer syndrome has been one of the greatest concerns in the world. Although several epidemiological studies have shown that hepatic low lipoprotein lipase (LPL) mRNA expression may be associated with dyslipidemia and tumor progression, it is still not known whether the liver plays an essential role in hyperlipidemia of ApcMin/+ mice. MAIN METHODS We measured the expression of metabolic enzymes that involved fatty acid uptake, de novo lipogenesis (DNL), β-oxidation and investigated hepatic triglyceride production in the liver of wild-type and ApcMin/+ mice. KEY FINDINGS We found that hepatic fatty acid uptake and DNL decreased, but there was no significant difference in fatty acid β-oxidation. Interestingly, the production of hepatic very low-density lipoprotein-triglyceride (VLDL-TG) decreased at 20 weeks of age, but marked steatosis was observed in the livers of the ApcMin/+ mouse. To further explore hypertriglyceridemia, we assessed the function of hepatic glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) for the first time. GPIHBP1 is governed by the transcription factor octamer-binding transcription factor-1 (Oct-1) which are involved in the nuclear factor-κB (NF-κB) signaling pathway in the liver of ApcMin/+ mice. Importantly, it was also confirmed that sn50 (100 μg/mL, an inhibitor of the NF-κB) reversed the tumor necrosis factor α (TNFα)-induced Oct-1 and GPIHBP1 reduction in HepG2 cells. SIGNIFICANCE Altogether, these findings highlighted a novel role of GPIHBP1 that might be responsible for hypertriglyceridemia in ApcMin/+ mice. Hypertriglyceridemia in these mice may be associated with their hepatic lipid metabolism development.
Collapse
Affiliation(s)
- Biao Yu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - Mingjun Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - Jiahuan Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - Lingyu Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - Xiaohuan Peng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - Xinwei Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - He Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - Anbei Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - Dazhong Zhao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - Hongsheng OuYang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - Xiaochun Tang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China.
| |
Collapse
|