Piraino L, Chen CY, Mereness J, Dunman PM, Ovitt C, Benoit D, DeLouise L. Identifying novel radioprotective drugs via salivary gland tissue chip screening.
BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548707. [PMID:
37503292 PMCID:
PMC10369976 DOI:
10.1101/2023.07.12.548707]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
During head and neck cancer treatment, off-target ionizing radiation damage to the salivary glands commonly causes a permanent loss of secretory function. Due to the resulting decrease in saliva production, patients have trouble eating, speaking and are predisposed to oral infections and tooth decay. While the radioprotective antioxidant drug Amifostine is approved to prevent radiation-induced hyposalivation, it has intolerable side effects that limit its use, motivating the discovery of alternative therapeutics. To address this issue, we previously developed a salivary gland mimetic (SGm) tissue chip platform. Here, we leverage this SGm tissue chip for high-content drug discovery. First, we developed in-chip assays to quantify glutathione and cellular senescence (β-galactosidase), which are biomarkers of radiation damage, and we validated radioprotection using WR-1065, the active form of Amifostine. Following validation, we tested other reported radioprotective drugs, including, Edaravone, Tempol, N-acetylcysteine (NAC), Rapamycin, Ex-Rad, and Palifermin, confirming that all drugs but NAC and Ex-Rad exhibited robust radioprotection. Next, a Selleck Chemicals library of 438 FDA-approved drugs was screened for radioprotection. We discovered 25 hits, with most of the drugs identified with mechanisms of action other than antioxidant activity. Hits were down-selected using EC 50 values and pharmacokinetics and pharmacodynamics data from the PubChem database leading to testing of Phenylbutazone (anti-inflammatory), Enoxacin (antibiotic), and Doripenem (antibiotic) for in vivo radioprotection in mice using retroductal injections. Results confirm that Phenylbutazone and Enoxacin exhibited equivalent radioprotection to Amifostine. This body of work demonstrates the development and validation of assays using a SGm tissue chip platform for high-content drug screening and the successful in vitro discovery and in vivo validation of novel radioprotective drugs with nonantioxidant primary indications pointing to possible, yet unknown novel mechanisms of radioprotection.
Collapse