1
|
Liu Y, Wang Y, Wen Y, Ma L, Riqing D, Jiang M. Dietary Conversion from All-Concentrate to All-Roughage Alters Rumen Bacterial Community Composition and Function in Yak, Cattle-Yak, Tibetan Yellow Cattle and Yellow Cattle. Animals (Basel) 2024; 14:2933. [PMID: 39457862 PMCID: PMC11503692 DOI: 10.3390/ani14202933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The experiment was to compare the effects of switching all-concentrate to all-roughage diets on rumen microflora and functional metabolism of yak, cattle-yak, Tibetan yellow cattle and yellow cattle living in different altitudes. A total of 24 yaks, cattle-yaks, Tibetan yellow cattle and yellow cattle with a similar weight and good body condition aged 3.5 years were selected and divided into four groups according to species. They were fed a concentrate diet with 40% soybean meal and 60% corn meal for the first month (C group) and a roughage diet with dry corn stalks (100%) for the second month (R group); the formal experimental period was 60 d. These results showed that the conversion had a significant effect on the rumen microflora structure of the four herds, and the biggest difference between concentrate and roughage diets was yak and cattle-yak, followed by Tibetan yellow cattle and yellow cattle. At the phylum level, Bacteroidetes and Firmicutes still predominate in all groups. Compared with the C groups, the relative abundance of Lentisphaerae and Kiritimatiellaeota increased in all R groups, and Lentisphaerae was significantly increased in yak and cattle-yak (p < 0.05). At the genus and species levels, Prevotella had the highest abundance, and the relative abundances of Prevotella, Ruminococcus, Sarcina and Ruminobacter in R groups were lower, while the abundances of other differential genera, including Methanobrevibacter, Fibrobacter, Treponema, Eubacterium, Butyrivibrio, Succinivibrio and Succinimonas, were all higher. Roughage diets increased the number of unique genes and functional genes encoding different CAZymes in rumen microorganisms in all four herds. In the functional contribution analysis, with the exception of ABC transporters and methane metabolism, Prevotella was the main contributor to almost all of these functions. In methane metabolism, Methanobrevibacter had the highest relative abundance, followed by Prevotella, Clostridia and Bacteroidales in all groups. Compared with Tibetan yellow cattle and yellow cattle, yaks and cattle-yaks have better adaptability to roughage, and its utilization rate can be fully improved to reduce methane emission. The study indicates that when four herds are converted to high roughage at the later stage of feeding, the growth and reproduction of rumen microorganisms are affected, and the abundance and diversity of rumen microorganisms are increased to varying degrees. The transformation of concentrate to roughage diet can change the metabolic pathways of rumen microorganisms in yaks and finally affect the fermentation mode of rumen. The above results provide a theoretical basis for the research and development of fattening feeds for yaks, cattle-yaks, Tibetan yellow cattle and yellow cattle and the intensive feeding of livestock on the plateau.
Collapse
Affiliation(s)
- Yili Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (Y.W.); (Y.W.); (D.R.)
| | - Yu Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (Y.W.); (Y.W.); (D.R.)
| | - Yongli Wen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (Y.W.); (Y.W.); (D.R.)
| | - Liangliang Ma
- College of Grassland Resources, Southwest Minzu University, Chengdu 610041, China;
| | - Daojie Riqing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (Y.W.); (Y.W.); (D.R.)
| | - Mingfeng Jiang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (Y.W.); (Y.W.); (D.R.)
| |
Collapse
|
2
|
Schantz MC, Smith DR, Harmel D, Goodwin DJ, Tolleson DR, Leyton JMO, Flynn KC, Yost J, Thorp KR, Arnold JG, White MJ, Adhikari K, Hajda C. The LTAR-integrated grazing land common experiment at the Texas Gulf. JOURNAL OF ENVIRONMENTAL QUALITY 2024. [PMID: 38797914 DOI: 10.1002/jeq2.20573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024]
Abstract
Extreme weather and climate events have become more frequent and directly affect the ecological structure and function of integrated grazing lands. While the Great Plains have experienced a long history of regular disturbances from drought and floods, grazing, and fires, the increased frequency and magnitude of these disturbances can reduce ecological resilience, largely depending on management practices. Alternative strategies designed to adaptively manage grazing land resources based on the ecology of the system should increase the resistance and resilience to disturbances when compared to prevailing practices. Determining the ecologic and economic value of alternative strategies will require long-term evaluations across large spatial scales. The Long-Term Agroecosystem Research Network has been established to evaluate the differences between alternative and prevailing practices among 18 strategically located sites and across decadal time scales throughout the continental United States. A key integrated grazing land site within this network is the Texas Gulf located at the Riesel Watersheds in the Blackland Prairie of Central Texas. At this study site, the differences between alternative and prevailing grazing management strategies are now being evaluated. The alternative strategy was designed using a combination of knowledge of the site and species ecology with modern-day tools and technologies. Alternatively, the prevailing practice implements a conventional year-round continuous grazing system with heavy reliance on hay and supplemental protein during winter. Results will provide grazing land managers with economically viable adaptive management choices for increasing ecological resilience following extreme and frequent disturbance events.
Collapse
Affiliation(s)
- Merilynn C Schantz
- USDA-ARS, Grassland Soil and Water Research Laboratory, Temple, Texas, USA
| | - Douglas R Smith
- USDA-ARS, Grassland Soil and Water Research Laboratory, Temple, Texas, USA
| | - Daren Harmel
- USDA-ARS, Center for Agricultural Resources Research Center, Fort Collins, Colorado, USA
| | - Douglas J Goodwin
- Center for Grazinglands and Ranch Management, Rangeland, Wildlife, and Fisheries Management Department, Texas A&M University, College Station, Texas, USA
| | - Doug R Tolleson
- Texas A&M AgriLife Sonora Research Station, Rangeland, Wildlife, & Fisheries Management Department, Texas A&M University, Sonora, Texas, USA
| | - Javier M Osorio Leyton
- Texas A&M AgriLife Blackland Research and Extension Center, Rangeland, Wildlife, & Fisheries Management Department, Temple, Texas, USA
| | - K Colton Flynn
- USDA-ARS, Grassland Soil and Water Research Laboratory, Temple, Texas, USA
| | - Jenifer Yost
- USDA-ARS, Grassland Soil and Water Research Laboratory, Temple, Texas, USA
| | - Kelly R Thorp
- USDA-ARS, Grassland Soil and Water Research Laboratory, Temple, Texas, USA
| | - Jeffery G Arnold
- USDA-ARS, Grassland Soil and Water Research Laboratory, Temple, Texas, USA
| | - Michael J White
- USDA-ARS, Grassland Soil and Water Research Laboratory, Temple, Texas, USA
| | - Kabindra Adhikari
- USDA-ARS, Grassland Soil and Water Research Laboratory, Temple, Texas, USA
| | - Chad Hajda
- USDA-ARS, Grassland Soil and Water Research Laboratory, Temple, Texas, USA
| |
Collapse
|
3
|
da Silva ÉBR, da Silva JAR, da Silva WC, Belo TS, Sousa CEL, dos Santos MRP, Neves KAL, Rodrigues TCGDC, Camargo-Júnior RNC, Lourenço-Júnior JDB. A Review of the Rumen Microbiota and the Different Molecular Techniques Used to Identify Microorganisms Found in the Rumen Fluid of Ruminants. Animals (Basel) 2024; 14:1448. [PMID: 38791665 PMCID: PMC11117383 DOI: 10.3390/ani14101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 05/26/2024] Open
Abstract
Variations in environments, including climate, diet, and agricultural practices, significantly impact the composition and microbial activity. A profound understanding of these adaptations allows for the improvement of nutrition and ruminant production. Therefore, this review aims to compile data from the literature on the rumen microbiota and molecular techniques for identifying the different types of microorganisms from the rumen fluid of ruminants. Analyzing the literature on rumen microbiology in different ruminants is complex due to microbial interactions, influenced by the environment and nutrition of these animals. In addition, it is worth noting that the genera of protozoa and fungi most evident in the studies used in this review on the microbiology of rumen fluid were Entodinium spp. and Aspergillus spp., respectively, and Fibrobacter spp. for bacteria. About the techniques used, it can be seen that DNA extraction, amplification, and sequencing were the most cited in the studies evaluated. Therefore, this review describes what is present in the literature and provides an overview of the main microbial agents in the rumen and the molecular techniques used.
Collapse
Affiliation(s)
- Éder Bruno Rebelo da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (W.C.d.S.); (T.C.G.d.C.R.); (R.N.C.C.-J.); (J.d.B.L.-J.)
| | | | - Welligton Conceição da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (W.C.d.S.); (T.C.G.d.C.R.); (R.N.C.C.-J.); (J.d.B.L.-J.)
| | - Tatiane Silva Belo
- Department of Veterinary Medicine, University Center of the Amazon (UNAMA), Santarém 68010-200, Brazil; (T.S.B.); (C.E.L.S.)
| | - Carlos Eduardo Lima Sousa
- Department of Veterinary Medicine, University Center of the Amazon (UNAMA), Santarém 68010-200, Brazil; (T.S.B.); (C.E.L.S.)
| | | | | | - Thomaz Cyro Guimarães de Carvalho Rodrigues
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (W.C.d.S.); (T.C.G.d.C.R.); (R.N.C.C.-J.); (J.d.B.L.-J.)
| | - Raimundo Nonato Colares Camargo-Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (W.C.d.S.); (T.C.G.d.C.R.); (R.N.C.C.-J.); (J.d.B.L.-J.)
| | - José de Brito Lourenço-Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (W.C.d.S.); (T.C.G.d.C.R.); (R.N.C.C.-J.); (J.d.B.L.-J.)
| |
Collapse
|
4
|
Abraham G, Kechero Y, Andualem D. Nutritional quality of indigenous legume browse in southern Ethiopia: farmers' preference and correlation of local valuation of feed value with scientific indicators. Front Vet Sci 2023; 10:1198212. [PMID: 37671277 PMCID: PMC10475582 DOI: 10.3389/fvets.2023.1198212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction Developing a technology for fodder trees and shrubs tailored to farmers' preferences is best done with their input, perceptions, and interests in mind. Objective The research aimed to determine farmer preferences for indigenous legumes, fodder trees, and shrubs (ILFTS) and to examine the relationship between feed valuation and scientific parameters. Methods A focus group discussion (FGD) was conducted with 10 farmers in each agroecological zone to determine the benchmarks for the preference ratings. The respondent farmers used the preference score sheet to rate all ILFTS on an individual basis. Twenty farmers with extensive experience in ILFTS took part in the preference score rating of each plant species in each agroecosystems. Dry matter (DM), organic matter (OM), ash, crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), metabolizable energy (ME) and condensed tannin (CT) content of the samples were determined. The standard two-stage in vitro Tilley and Terry method was used to measure the in vitro dry matter digestibility (IVDMD) and in vitro organic matter digestibility (IVOMD) of samples. Digestible organic matter in dry matter (DOMD) and ME values were estimated using standard models. Analysis of variance (ANOVA) was used to analyze the variation among the species in agroecosystems. Tukey HSD tests were used for mean separation. Results and discussions Farmers evaluated the ILFTS using a variety of parameters, according to the study (feed value, growth rate, biomass output, compatibility, and multifunctionality). The farmers' ILFTS preference score on the evaluation criteria differed considerably (p<0.05) with species in agroecosystems. The CP, ash, and ME values of ILFTS in the study were moderate to high although exhibited a wide variation among the species in agroecosystems. The CP content was above the minimum requirement (8%) to support the normal function of rumen microorganisms. Moreover, CP content exhibited a positive significant correlation with IVDMD, IVOMD, and DOMD, unlike CT and ADL which exhibited a negative significant correlation. Conversely, the DM, OM, CP, IVDMD, IVOMD, DOMD, and ME were shown a positive significant correlation with farmers' feed value preference score, unlike the ADL and CT which exhibited a negative significant correlation. Conclusions Farmers' indigenous knowledge of feed value is therefore relevant for judging the nutritive value of the ILFTS and could complement the scientific indicators.
Collapse
Affiliation(s)
- Getachew Abraham
- Department of Animal Science, College of Agricultural Sciences, Arba-Minch University, Arba Minch, Ethiopia
| | - Yisehak Kechero
- Department of Animal Science, College of Agricultural Sciences, Arba-Minch University, Arba Minch, Ethiopia
| | - Dereje Andualem
- Department of Animal Science, College of Agriculture and Natural Resources, Dilla University, Dilla, Ethiopia
| |
Collapse
|
5
|
Nwokocha BC, Chatzifragkou A, Fagan CC. Impact of Ultrasonication on African Oil Bean ( Pentaclethra macrophylla Benth) Protein Extraction and Properties. Foods 2023; 12:foods12081627. [PMID: 37107422 PMCID: PMC10137838 DOI: 10.3390/foods12081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
African oil bean (Pentaclethra macrophylla Benth) is an underutilised edible oil seed that could represent a sustainable protein source. In this study, the impact of ultrasonication on the extraction efficiency and properties of protein from African oil bean (AOB) seeds was evaluated. The increase in the duration of extraction favoured the extraction of AOB proteins. This was observed by an increase in extraction yield from 24% to 42% (w/w) when the extraction time was increased from 15 min to 60 min. Desirable properties were observed in extracted AOB proteins; the amino acid profile of protein isolates revealed higher ratios of hydrophobic to hydrophilic amino acids compared to those of the defatted seeds, suggesting alterations in their functional properties. This was also supported by the higher proportion of hydrophobic amino acids and high surface hydrophobicity index value (3813) in AOB protein isolates. The foaming capacity of AOB proteins was above 200%, with an average foaming stability of 92%. The results indicate that AOB protein isolates can be considered promising food ingredients and could help stimulate the growth of the food industry in tropical Sub-Saharan regions where AOB seeds thrive.
Collapse
Affiliation(s)
- Blessing C Nwokocha
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights RG6 6DZ, UK
| | - Afroditi Chatzifragkou
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights RG6 6DZ, UK
| | - Colette C Fagan
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights RG6 6DZ, UK
| |
Collapse
|
6
|
Sun X, Andrew IG, Harris PJ, Hoskin SO, Joblin KN, He Y. Mapping Pectic-Polysaccharide Epitopes in Cell Walls of Forage Chicory ( Cichorium intybus) Leaves. FRONTIERS IN PLANT SCIENCE 2021; 12:762121. [PMID: 34880888 PMCID: PMC8646105 DOI: 10.3389/fpls.2021.762121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/20/2021] [Indexed: 05/17/2023]
Abstract
The cell walls of forage chicory (Cichorium intybus) leaves are known to contain high proportions of pectic polysaccharides. However, little is known about the distribution of pectic polysaacharides among walls of different cell types/tissues and within walls. In this study, immunolabelling with four monoclonal antibodies was used to map the distribution of pectic polysaccharides in the cell walls of the laminae and midribs of these leaves. The antibodies JIM5 and JIM7 are specific for partially methyl-esterified homogalacturonans; LM5 and LM6 are specific for (1→4)-β-galactan and (1→5)-α-arabinan side chains, respectively, of rhamnogalacturonan I. All four antibodies labelled the walls of the epidermal cells with different intensities. JIM5 and JIM7, but not LM5 or LM6, labelled the middle lamella, tricellular junctions, and the corners of intercellular spaces of ground, xylem and phloem parenchyma. LM5, but not LM6, strongly labelled the walls of the few sclerenchyma fibres in the phloem of the midrib and lamina vascular bundles. The LM5 epitope was absent from some phloem parenchyma cells. LM6, but not LM5, strongly labelled the walls of the stomatal guard cells. The differential distribution of pectic epitopes among walls of different cell types and within walls may reflect the deposition and modification of these polysaccharides which are involved in cell wall properties and cell development.
Collapse
Affiliation(s)
- Xuezhao Sun
- The Innovation Centre of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin Agricultural Science and Technology University, Jilin City, China
- Jilin Inter-Regional Cooperation Centre for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin City, China
| | | | - Philip J. Harris
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Keith N. Joblin
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Yuhua He
- The Innovation Centre of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin Agricultural Science and Technology University, Jilin City, China
- Jilin Inter-Regional Cooperation Centre for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin City, China
| |
Collapse
|