1
|
Ma Z, Mondor M, Dowle AA, Goycoolea FM, Hernández-Álvarez AJ. Buffalo worm (Alphitobius diaperinus) proteins: Structural properties, proteomics and nutritional benefits. Food Chem 2025; 464:141757. [PMID: 39503093 DOI: 10.1016/j.foodchem.2024.141757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
Biophysical methods such as circular dichroism (CD) and differential scanning calorimetry (DSC) have been minimally used to characterize insect-derived proteins. This study examines the insect Alphitobius diaperinus as a potential protein source. Techniques such as alkaline solubilization coupled to isoelectric precipitation and Osborne fractionation were used to obtain protein concentrates and fractions (albumins, globulins, prolamins, glutelins). SDS-PAGE results showed dominant protein bands at 78.3, 73.3, 49.3, 34.5, 32.0, and 10.3 kDa. All fractions had over 60 % α-helix and β-sheet structures, indicating stable conformations. Prolamins showed high surface hydrophobicity and thermal stability. Nutritionally, glutelins exhibited the highest concentration of essential amino acids (68.75 g/100 g protein), and demonstrated superior In vitro protein-digestibility (84.04 %) as well as the highest In vitro protein-digestibility corrected amino acid score (73.11 %). Therefore, this study characterized the structural-function relationship of A. diaperinus proteins and collectively assessed their suitability and safety for human consumption.
Collapse
Affiliation(s)
- Zidan Ma
- Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Martin Mondor
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, QC J2S 8E3, Canada; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec G1V 0A6, QC, Canada
| | - Adam A Dowle
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK
| | | | | |
Collapse
|
2
|
Galindo-Luján R, Pont L, Quispe F, Sanz-Nebot V, Benavente F. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry Combined with Chemometrics for Protein Profiling and Classification of Boiled and Extruded Quinoa from Conventional and Organic Crops. Foods 2024; 13:1906. [PMID: 38928847 PMCID: PMC11203106 DOI: 10.3390/foods13121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Quinoa is an Andean crop that stands out as a high-quality protein-rich and gluten-free food. However, its increasing popularity exposes quinoa products to the potential risk of adulteration with cheaper cereals. Consequently, there is a need for novel methodologies to accurately characterize the composition of quinoa, which is influenced not only by the variety type but also by the farming and processing conditions. In this study, we present a rapid and straightforward method based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to generate global fingerprints of quinoa proteins from white quinoa varieties, which were cultivated under conventional and organic farming and processed through boiling and extrusion. The mass spectra of the different protein extracts were processed using the MALDIquant software (version 1.19.3), detecting 49 proteins (with 31 tentatively identified). Intensity values from these proteins were then considered protein fingerprints for multivariate data analysis. Our results revealed reliable partial least squares-discriminant analysis (PLS-DA) classification models for distinguishing between farming and processing conditions, and the detected proteins that were critical for differentiation. They confirm the effectiveness of tracing the agricultural origins and technological treatments of quinoa grains through protein fingerprinting by MALDI-TOF-MS and chemometrics. This untargeted approach offers promising applications in food control and the food-processing industry.
Collapse
Affiliation(s)
- Rocío Galindo-Luján
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028 Barcelona, Spain; (R.G.-L.); (L.P.); (V.S.-N.)
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028 Barcelona, Spain; (R.G.-L.); (L.P.); (V.S.-N.)
- Serra Húnter Program, Generalitat de Catalunya, 08007 Barcelona, Spain
| | - Fredy Quispe
- National Institute of Agricultural Innovation (INIA), Lima 15024, Peru;
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028 Barcelona, Spain; (R.G.-L.); (L.P.); (V.S.-N.)
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028 Barcelona, Spain; (R.G.-L.); (L.P.); (V.S.-N.)
| |
Collapse
|
3
|
Maria Medeiros Theóphilo Galvão A, Lamy Rasera M, de Figueiredo Furtado G, Grossi Bovi Karatay G, M Tavares G, Dupas Hubinger M. Lentil protein isolate (Lens culinaris) subjected to ultrasound treatment combined or not with heat-treatment: structural characterization and ability to stabilize high internal phase emulsions. Food Res Int 2024; 183:114212. [PMID: 38760140 DOI: 10.1016/j.foodres.2024.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 05/19/2024]
Abstract
This study evaluated the effect of ultrasound treatment combined or not with heat treatment applied to lentil protein isolate (LPI) aiming to enhance its ability to stabilize high internal phase emulsions (HIPE). LPI dispersion (2%, w/w) was ultrasound-treated at 60% (UA) and 70% (UB) amplitude for 7 min; these samples were subjected to and then heat treatments at 70 °C (UAT70 and UBT70, respectively) or 80 °C (UAT80 and UBT80, respectively) for 20 min. HIPEs were produced with 25% untreated and treated LPI dispersions and 75% soybean oil using a rotor-stator (15,500 rpm/1 min). The LPI dispersions were evaluated for particle size, solubility, differential scanning calorimetry, electrophoresis, secondary structure estimation (circular dichroism and FT-IR), intrinsic fluorescence, surface hydrophobicity, and free sulfhydryl groups content. The HIPEs were evaluated for droplet size, morphology, rheology, centrifugal stability, and the Turbiscan test. Ultrasound treatment decreased LPI dispersions' particle size (∼80%) and increased solubility (∼90%). Intrinsic fluorescence and surface hydrophobicity confirmed LPI modification due to the exposure to hydrophobic patches. The combination of ultrasound and heat treatments resulted in a reduction in the free sulfhydryl group content of LPI. HIPEs produced with ultrasound-heat-treated LPI had a lower droplet size distribution mode, greater oil retention values in the HIPE structure (> 98%), lower Turbiscan stability index (< 2), and a firmer and more homogeneous appearance compared to HIPE produced with untreated LPI, indicating higher stability for the HIPEs stabilized by treated LPI. Therefore, combining ultrasound and heat treatments could be an effective method for the functional modification of lentil proteins, allowing their application as HIPE emulsifiers.
Collapse
Affiliation(s)
- Andrêssa Maria Medeiros Theóphilo Galvão
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil.
| | - Mariana Lamy Rasera
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Guilherme de Figueiredo Furtado
- Centro de Ciências da Natureza, Universidade Federal de São Carlos, Rod. Lauri Simões de Barros, km 12 - SP 189, Buri, SP 18290-000, Brazil
| | - Graziele Grossi Bovi Karatay
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Guilherme M Tavares
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Míriam Dupas Hubinger
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| |
Collapse
|
4
|
Tushir S, Yadav DN, Kapoor RK, Narsaiah K, Bala M, Wadhwa R. Low temperature desolventization: effect on physico-chemical, functional and structural properties of rice bran protein. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:516-527. [PMID: 38327868 PMCID: PMC10844166 DOI: 10.1007/s13197-023-05859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/06/2023] [Accepted: 09/29/2023] [Indexed: 02/09/2024]
Abstract
De-oiled rice bran is a good source of high-quality protein; however, the current practice of desolventization at high temperature (110-120 °C) denatures the protein, making its extraction difficult and uneconomical. The present study aims to investigate the effect of low temperature desolventization of de-oiled rice bran (LTDRB) on extraction, yield, and purity of protein and its comparison with protein obtained from high temperature desolventized de-oiled rice bran (HTDRB). The optimal conditions for preparation of protein from LTDRB were: extraction pH 11.00, extraction duration 52 min, and extraction temperature 58 °C resulting in an extraction efficiency, yield, and purity of 54.0, 7.23, and 78.70%, respectively. The LTDRB showed a positive impact on the color, solubility, foaming capacity and stability of protein whereas the absorption and emulsification properties were better for HTDRB protein. Significant decrease in enthalpy (ΔH) for denaturation was observed for LTDRB protein as compared to HTDRB protein. Scanning electron microscopy analysis revealed that HTDRB protein was more compact than LTDRB protein. LTDRB protein had smaller particle size distribution than HTDRB. Study suggested that low temperature desolventization can result in higher protein extraction with better physico-chemical, structural, and functional properties of protein obtained from DRB.
Collapse
Affiliation(s)
- Surya Tushir
- ICAR- Central Institute of Post-Harvest Engineering and Technology, Ludhiana, Punjab 141004 India
- Maharshi Dayanand University, Rohtak, India
| | - Deep Narayan Yadav
- ICAR- Central Institute of Post-Harvest Engineering and Technology, Ludhiana, Punjab 141004 India
| | | | - K. Narsaiah
- ICAR- Central Institute of Post-Harvest Engineering and Technology, Ludhiana, Punjab 141004 India
| | - Manju Bala
- ICAR- Central Institute of Post-Harvest Engineering and Technology, Ludhiana, Punjab 141004 India
| | - Ritika Wadhwa
- ICAR- Central Institute of Post-Harvest Engineering and Technology, Ludhiana, Punjab 141004 India
| |
Collapse
|
5
|
Hu J, Yu B, Yuan C, Tao H, Wu Z, Dong D, Lu Y, Zhang Z, Cao Y, Zhao H, Cheng Y, Cui B. Influence of heat treatment before and/or after high-pressure homogenization on the structure and emulsification properties of soybean protein isolate. Int J Biol Macromol 2023; 253:127411. [PMID: 37838131 DOI: 10.1016/j.ijbiomac.2023.127411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
This study investigates the effects of heat treatment before high-pressure homogenization (HHPH) and heat treatment after high-pressure homogenization (HPHH) at different pressures (20, 60, and 100 MPa) on the structural and emulsification properties of soy protein isolate (SPI). The results indicate that HHPH treatment increases the surface hydrophobicity (H0) of the SPI, reduces β-fold and irregular curls, leading to the formation of soluble aggregates, increased adsorbed protein content, and subsequent improvements in emulsification activity index (EAI) and emulsion stability index (ESI). In contrast, the HPHH treatment promoted the exchange of SH/SS bonds between protein molecules and facilitated the interaction of basic peptides and β-subunits, leading to larger particle sizes of the soluble aggregates compared to the HHPH-treated samples. However, excessive aggregation in HPHH-treated aggregates leads to decreased H0 and adsorbed protein content, and increased interfacial tension, negatively affecting the emulsification properties. Compared to the HPHH treatment, HHPH treatment at homogenization pressures of 20 to 100 MPa increases EAI and ESI by 5.81-29.6 % and 5.31-25.9 %, respectively. These findings provide a fundamental basis for soybean protein manufacturers to employ appropriate processing procedures aimed at improving emulsification properties.
Collapse
Affiliation(s)
- Jiyong Hu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Die Dong
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yanmin Lu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yungang Cao
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Haibo Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Yunhui Cheng
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
6
|
Rodriguez-Espinosa ME, Guevara-Oquendo VH, He J, Zhang W, Yu P. Research updates and progress on nutritional significance of the amides I and II, alpha-helix and beta-sheet ratios, microbial protein synthesis, and steam pressure toasting condition with globar and synchrotron molecular microspectroscopic techniques with chemometrics. Crit Rev Food Sci Nutr 2023; 65:367-381. [PMID: 37995098 DOI: 10.1080/10408398.2023.2274442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
This article aims to review research updates and progress on the nutritional significance of the amides I and II, the alpha-helix and beta-sheet ratios, the microbial protein synthesis, and the steam pressure toasting condition in food and feed with globar and synchrotron molecular microspectroscopic techniques plus chemometrics (both univariate and multivariate techniques). The review focused on (I) impact of the amides I and II, and the alpha-helix and beta-sheet-structure ratios in food and feeds; (II) Current research progress and update in synchrotron technique and application in feed and food molecular structure studies that are associated with nutrition delivery; (III) Impact of thermal processing- steam pressure toasting condition on feed and food; (IV). Impact of the microbial protein synthesis and methodology on feed and food; and (V). Impact on performance and production of ruminants with Faba beans.
Collapse
Affiliation(s)
- Maria E Rodriguez-Espinosa
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
| | - Victor H Guevara-Oquendo
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
| | - Jiangfeng He
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
| | - Weixian Zhang
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Peiqiang Yu
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
7
|
Wang X, Zhao Z. A mini-review about direct steam heating and its application in dairy and plant protein processing. Food Chem 2023; 408:135233. [PMID: 36535181 DOI: 10.1016/j.foodchem.2022.135233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/21/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The world's requirement for plant protein consumption is increasing. However, their application in different foods is limited due to their low techno-functionality. Heating is the most widely used method to improve the functionality of proteins. Compared to indirect tubular or plate heating methods, direct steam injection heating (DSIH) can heat the sample much faster, thus modifying the structure and functionality of protein differently. It is used in the sterilization of milk to minimize the heat-induced denaturation of whey proteins and the loss of volatiles. By contrast, its application in producing plant protein ingredients is seldom. This review summarizes recent research using DSIH to process dairy- and plant-based proteins and proposes future research perspectives. DSIH is a promising technique for producing functional protein ingredients. It is of particular interest to overcome the techno-functional hurdles of plant protein blends using DSIH to improve their behavior in different food matrices.
Collapse
Affiliation(s)
- Xiuju Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Zhengtao Zhao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China.
| |
Collapse
|
8
|
Zhou L, Zhang M, Cheng J, Wang Z, Guo Z, Li B. Raman Spectroscopy investigate structural change of rice bran protein induced by three oxidants. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Linyi Zhou
- College of Food Science, Beijing Technology and Business University, Beijing, China
- China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University, Beijing, China
| | - Min Zhang
- College of Food Science, Beijing Technology and Business University, Beijing, China
| | - Jieyi Cheng
- College of Food Science, Beijing Technology and Business University, Beijing, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Bailiang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| |
Collapse
|
9
|
Yang C, Zhu X, Zhang Z, Yang F, Wei Y, Zhang Z, Yang F. Heat treatment of quinoa (Chenopodium quinoa Willd.) albumin: Effect on structural, functional, and in vitro digestion properties. Front Nutr 2022; 9:1010617. [PMID: 36185662 PMCID: PMC9520662 DOI: 10.3389/fnut.2022.1010617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Quinoa seeds are rich in protein, polyphenols, phytosterols, and flavonoid substances, and excellent amino acid balance that has been revisited recently as a new food material showing potential applied in fitness and disease prevention. Heat treatment is one of the most effective strategies for improving the physiochemical characteristics of a protein. However, research examining the effects of temperature on quinoa albumin (QA) properties is limited. In this study, QA was subjected to thermal treatment (50, 60, 70, 80, 90, 100, and 121°C). SDS−PAGE revealed that QA is composed of several polypeptides in the 10−40 kDa range. Amino acid (AA) analysis showed that the branched-chain amino acids (BCAAs), negatively charged amino acid residues (NCAAs), and positively charged amino acids (PCAAs) contents of QA were more than double that of the FAO/WHO reference standard. Additionally, heating induced structural changes, including sulfhydryl-disulfide interchange and the exposure of hydrophobic groups. Scanning electron microscopy demonstrated that the albumin underwent denaturation, dissociation, and aggregation during heating. Moreover, moderate heat treatment (60, 70, and 80°C) remarkably improved the functional properties of QA, enhancing its solubility, water (oil) holding capacity, and emulsification and foaming characteristics. However, heating also reduced the in vitro digestibility of QA. Together, these results indicate that heat treatment can improve the structural and functional properties of QA. This information has important implications for optimizing quinoa protein production, and various products related to quinoa protein could be developed. which provides the gist of commercial applications of quinoa seeds for spreading out in the marketplace.
Collapse
Affiliation(s)
- Chao Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xijin Zhu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Zhaoyun Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Farong Yang
- Animal Husbandry, Pasture and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Yuming Wei
- Animal Husbandry, Pasture and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Zhen Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Fumin Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Fumin Yang,
| |
Collapse
|
10
|
Pöri P, Nisov A, Nordlund E. Enzymatic modification of oat protein concentrate with trans- and protein-glutaminase for increased fibrous structure formation during high-moisture extrusion processing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Venkateswara Rao M, C K S, Rawson A, D V C, N V. Modifying the plant proteins techno-functionalities by novel physical processing technologies: a review. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34751062 DOI: 10.1080/10408398.2021.1997907] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plant proteins have recently gained market demand and momentum due to their environmentally friendly origins and health advantages over their animal-derived counterparts. However, their lower techno-functionalities, digestibility, bioactivities, and anti-nutritional compounds have limited their application in foods. Increased demand for physically modified proteins with better techno-functionalities resulted in the application of different thermal and non-thermal treatments to modify plant proteins. Novel physical processing technologies (NPPT) considered 'emerging high-potential treatments for tomorrow' are required to alter protein functionality, enhance bioactive peptide formations, reduce anti-nutritional, reduce loss of nutrients, prevention of damage to heat liable proteins and clean label. NPPT can be promising substitutes for the lower energy-efficient and aggressive thermal treatments in plant protein modification. These facts captivated the interest of the scientific community in designing novel functional food systems. However, these improvements are not verifiable for all the plant proteins and depend immensely on the protein type and concentration, other environmental parameters (pH, ionic strength, temperature, and co-solutes), and NPPT conditions. This review addresses the most promising approaches of NPPT for the modification of techno-functionalities of plant proteins. New insights elaborating the effect of NPPTs on proteins' structural and functional behavior in relation to other food components are discussed. The combined application of NPPTs in the field of plant-based bioactive functionalities is also explored.
Collapse
Affiliation(s)
- Madaraboina Venkateswara Rao
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM)- Thanjavur (an Institute of National Importance; formerly IIFPT), Thanjavur, India
| | - Sunil C K
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM)- Thanjavur (an Institute of National Importance; formerly IIFPT), Thanjavur, India
| | - Ashish Rawson
- Department of Food Safety and Quality testing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM)- Thanjavur (an Institute of National Importance; formerly IIFPT), Thanjavur, India
| | - Chidanand D V
- Department of Industry Academia Cell, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM)- Thanjavur (an Institute of National Importance; formerly IIFPT), Thanjavur, India
| | - Venkatachlapathy N
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM)- Thanjavur (an Institute of National Importance; formerly IIFPT), Thanjavur, India
| |
Collapse
|
12
|
Determination of thermal, molecular changes, and functional properties in stabilized rice bran. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2020-0168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
In this study, stabilization was performed using three different oven temperatures (110, (T1) 130 (T2) and 150 °C(T3)) in the oven set at 10% moisture. The effect of stabilization on lipase activity, functional, and thermal properties of rice bran. Lipase activity of control (27.92 U/g) was to be higher than stabilized rice bran samples. Starch gelatinization peak temperature ranged from 70.05 (T3) to 85.09 °C (control). DPPH scavenging effect of control was 12.99 mmol TE. The highest DPPH radical scavenging effect value (15.72 mmol TE) was determined in the T3 sample. ABTS radical scavenging effect of stabilized samples significantly increased (p < 0.05) and the increase for T1, T2, and T3 was found to be 73, 75, and 77%, respectively. The highest ferulic (4284 μg/g) and p-coumaric acid (1180 μg/g) contents were determined in T3 and T1 samples, respectively. The content of bound ferulic and p-coumaric acids of stabilized rice bran samples was 2.41 and 2.33 times higher than control samples. While prolamine content was 3.38–4.18 mg/mL; glutelin content ranged from 4.45 to 5.11 mg/mL. An obvious state change during stabilization was observed in all samples around 70–85.9 °C. The results of the study revealed that stabilization might change the functional and thermal properties of rice bran.
Collapse
|