1
|
Dos Santos JRM, Kempka AP. White wine vinification and an expanded insight into pellicular macerations: bibliometric and bibliographic review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39031823 DOI: 10.1002/jsfa.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Pellicular macerations in the vinification of white wines involve the contact of grape skins and seeds with the must before, during or after alcoholic fermentation. Pre-fermentative pellicular maceration aims to enrich the must with volatile compounds and aroma precursors. Fermentative maceration occurs during alcoholic fermentation, whereas post-fermentative maceration is carried out after this process, associated with orange, amber or skin-contact wines, which have experienced a growing global demand in recent years. In this context, this research aimed to conduct a bibliometric review on pellicular macerations in white wines using two search strategies on the specific platform for the period from 2010 to 2023. Additionally, we sought to identify research trends in this segment of the wine industry through a comprehensive literature review of the retrieved documents. RESULTS The results emphasized more studies on pre-fermentative pellicular maceration than on long-duration macerations during and after alcoholic fermentation. Alternative maceration techniques, such as grape freezing, were also observed as study subjects, including their effects on final wines. The research identified a wide variety of grapes explored in studies related to pellicular macerations of the Vitis vinifera L. species, with approximately 50 distinct nomenclatures identified. Regarding pre-fermentative macerations, the contact time varied from 2 to 60 h, with the temperature range 1-20 °C. CONCLUSION The specific search for extended skin contact white wines revealed a limited number of available documents, indicating that studies related to this product style are promising and necessary, given the growing commercial relevance of this product profile. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- José Ricardo Machado Dos Santos
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University. Graduate Program in Food Science and Technology, Pinhalzinho, Brazil
| | - Aniela Pinto Kempka
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University. Graduate Program in Food Science and Technology, Pinhalzinho, Brazil
| |
Collapse
|
2
|
Meneely J, Greer B, Kolawole O, Elliott C. T-2 and HT-2 Toxins: Toxicity, Occurrence and Analysis: A Review. Toxins (Basel) 2023; 15:481. [PMID: 37624238 PMCID: PMC10467144 DOI: 10.3390/toxins15080481] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
One of the major classes of mycotoxins posing serious hazards to humans and animals and potentially causing severe economic impact to the cereal industry are the trichothecenes, produced by many fungal genera. As such, indicative limits for the sum of T-2 and HT-2 were introduced in the European Union in 2013 and discussions are ongoing as to the establishment of maximum levels. This review provides a concise assessment of the existing understanding concerning the toxicological effects of T-2 and HT-2 in humans and animals, their biosynthetic pathways, occurrence, impact of climate change on their production and an evaluation of the analytical methods applied to their detection. This study highlights that the ecology of F. sporotrichioides and F. langsethiae as well as the influence of interacting environmental factors on their growth and activation of biosynthetic genes are still not fully understood. Predictive models of Fusarium growth and subsequent mycotoxin production would be beneficial in predicting the risk of contamination and thus aid early mitigation. With the likelihood of regulatory maximum limits being introduced, increased surveillance using rapid, on-site tests in addition to confirmatory methods will be required. allowing the industry to be proactive rather than reactive.
Collapse
Affiliation(s)
- Julie Meneely
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Brett Greer
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Oluwatobi Kolawole
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Christopher Elliott
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang 12120, Thailand
| |
Collapse
|
3
|
Kamilari E, Stanton C, Reen FJ, Ross RP. Uncovering the Biotechnological Importance of Geotrichum candidum. Foods 2023; 12:foods12061124. [PMID: 36981051 PMCID: PMC10048088 DOI: 10.3390/foods12061124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Fungi make a fundamental contribution to several biotechnological processes, including brewing, winemaking, and the production of enzymes, organic acids, alcohols, antibiotics, and pharmaceuticals. The present review explores the biotechnological importance of the filamentous yeast-like fungus Geotrichum candidum, a ubiquitous species known for its use as a starter in the dairy industry. To uncover G. candidum's biotechnological role, we performed a search for related work through the scientific indexing internet services, Web of Science and Google Scholar. The following query was used: Geotrichum candidum, producing about 6500 scientific papers from 2017 to 2022. From these, approximately 150 that were associated with industrial applications of G. candidum were selected. Our analysis revealed that apart from its role as a starter in the dairy and brewing industries, this species has been administered as a probiotic nutritional supplement in fish, indicating improvements in developmental and immunological parameters. Strains of this species produce a plethora of biotechnologically important enzymes, including cellulases, β-glucanases, xylanases, lipases, proteases, and α-amylases. Moreover, strains that produce antimicrobial compounds and that are capable of bioremediation were identified. The findings of the present review demonstrate the importance of G. candidum for agrifood- and bio-industries and provide further insights into its potential future biotechnological roles.
Collapse
Affiliation(s)
- Eleni Kamilari
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
- Department of Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - F Jerry Reen
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
- Synthesis and Solid State Pharmaceutical Centre, University College Cork, T12 YT20 Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| |
Collapse
|
4
|
Torović L, Lakatoš I, Majkić T, Beara I. Risk to public health related to the presence of ochratoxin A in wines from Fruška Gora. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Lin LJ, Du FM, Zeng J, Liang ZJ, Zhang XY, Gao XY. Deep insights into fungal diversity in traditional Chinese sour soup by Illumina MiSeq sequencing. Food Res Int 2020; 137:109439. [PMID: 33233120 DOI: 10.1016/j.foodres.2020.109439] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
Sour soup is a traditional condiment in Guizhou Province, China. The purpose of this study was to investigate the differences in the fungi present in 5 types of sour soup (tomato sour soup, chili sour soup, cherry tomato sour soup, spoiled tomato sour soup, and red sour soup made from blended tomato and chili sour soup subjected to secondary fermentation) and to determine the reasons for the deterioration of tomato sour soup by comparing the fungal communities in normal and deterioratedtomato sour soup. A total of 5 phyla were detected in all 5 samples, including Ascomycota (69.38%), Basidiomycota (7.63%), Zygomycota (1.59%), Chytridiomycota (0.01%) and unclassified phyla (21.39%). Ascomycota was the main phylum in each sample except the red sour soup made from blended tomato and chili sour soup subjected to secondary fermentation. That sour soup contained many unrecognized phyla. At the genus level, there were major differences among the different samples. Dekkera spp. and Pichia spp. were the main dominant fungus in tomato sour soup, Saccharomyces spp. and Pichia spp. were the dominant fungus in chili sour soup, and Pichia spp. were the dominant fungus in cherry tomato sour soup. When sour soup went bad, the fungus of sour soup changed greatly, and the unknown fungal genera, Cladospora spp., Saccharomyces spp. and Emericella spp. became the dominant fungal genera. In addition, after the secondary fermentation of tomato and chili sour soup mixed with garlic and ginger, the fungal genera of the base fermentation were replaced by unknown fungal genera. Moreover, there were various spoilage fungi in sour soup, which indicated that there were safety risks in naturally fermented sour soup and should be further controlled. This study revealed the fungal flora in sour soup made from different vegetables and compared the fungal diversity of spoiled and normal tomato sour soup and thereby provided a basis for understanding the fungal diversity of sour soup in China and guiding the production of sour soup.
Collapse
Affiliation(s)
- Liang-Jing Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Fang-Min Du
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jian Zeng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Jian Liang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Yong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Xiang-Yang Gao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Fliszár-Nyúl E, Lemli B, Kunsági-Máté S, Szente L, Poór M. Interactions of Mycotoxin Alternariol with Cyclodextrins and its Removal from Aqueous Solution by Beta-Cyclodextrin Bead Polymer. Biomolecules 2019; 9:biom9090428. [PMID: 31480370 PMCID: PMC6769471 DOI: 10.3390/biom9090428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Alternariol is an Alternaria mycotoxin that appears in fruits, tomatoes, oilseeds, and corresponding products. Chronic exposure to it can induce carcinogenic and xenoestrogenic effects. Cyclodextrins (CDs) are ring-shaped molecules built up by glucose units, which form host–guest type complexes with some mycotoxins. Furthermore, insoluble CD polymers seem suitable for the extraction/removal of mycotoxins from aqueous solutions. In this study, the interactions of alternariol with β- and γ-CDs were tested by employing fluorescence spectroscopic and modeling studies. Moreover, the removal of alternariol from aqueous solutions by insoluble β-CD bead polymer (BBP) was examined. Our major observations/conclusions are the following: (1) CDs strongly increased the fluorescence of alternariol, the strongest enhancement was induced by the native γ-CD at pH 7.4. (2) Alternariol formed the most stable complexes with the native γ-CD (logK = 3.2) and the quaternary ammonium derivatives (logK = 3.4–3.6) at acidic/physiological pH and at pH 10.0, respectively. (3) BBP effectively removed alternariol from aqueous solution. (4) The alternariol-binding ability of β-CD polymers was significantly higher than was expected based on their β-CD content. (5) CD technology seems a promising tool to improve the fluorescence detection of alternariol and/or to develop new mycotoxin binders to decrease alternariol exposure.
Collapse
Affiliation(s)
- Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, H-7642 Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, H-7642 Pécs, Hungary
| | - Beáta Lemli
- János Szentágothai Research Centre, University of Pécs, H-7642 Pécs, Hungary
- Institute of Organic and Medicinal Chemistry, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Sándor Kunsági-Máté
- János Szentágothai Research Centre, University of Pécs, H-7642 Pécs, Hungary
- Institute of Organic and Medicinal Chemistry, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Lajos Szente
- Cyclolab Cyclodextrin Research & Development Laboratory, Ltd., H-1097 Budapest, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, H-7642 Pécs, Hungary.
- János Szentágothai Research Centre, University of Pécs, H-7642 Pécs, Hungary.
| |
Collapse
|
7
|
Paterson RRM, Venâncio A, Lima N, Guilloux-Bénatier M, Rousseaux S. Predominant mycotoxins, mycotoxigenic fungi and climate change related to wine. Food Res Int 2017; 103:478-491. [PMID: 29389638 DOI: 10.1016/j.foodres.2017.09.080] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022]
Abstract
Wine is a significant contributor to the economies of many countries. However, the commodity can become contaminated with mycotoxins produced by certain fungi. Most information on mycotoxins in wine is from Spain, Italy and France. Grapes can be infected by mycotoxigenic fungi, of which Aspergillus carbonarius producing ochratoxin A (OTA) is of highest concern. Climate is the most important factor in determining contamination once the fungi are established, with high temperatures being a major factor for OTA contamination: OTA in wine is at higher concentrations in warmer southern Europe than northern. Contamination by fumonisins is a particular concern, related to Aspergillus niger producing these compounds and the fungus being isolated frequently from grapes. Aflatoxins can be present in wine, but patulin is seldom detected. Alternaria mycotoxins (e.g. alternariol) have been frequently observed. There are indications that T-2 toxin may be common. Also, the combined effects of mycotoxins in wine require consideration. No other mycotoxins are currently of concern. Accurate fungal identifications and mycotoxin detection from the fungi are important and a consideration of practical methods are required. There is a diversity of wines that can be contaminated (e.g. red, white, sweet, dry and fortified). The occurrence of OTA is higher in red and sweet than white wines. Steps to control mycotoxins in wine involve good agriculture practices. The effect of climate change on vines and mycotoxins in wine needs urgent consideration by well-constructed modelling studies and expert interpretation of existing data. Reliable models of the effect of climate change on vines is a priority: the health of vines affects mycotoxin contamination. A modelling study of OTA in grapes at higher temperatures over 100years is required. Progress has been made in reducing OTA in wine. The other mycotoxins require consideration and the effects of climate change will become crucial.
Collapse
Affiliation(s)
- R Russell M Paterson
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710 057 Braga, Portugal.
| | - Armando Venâncio
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710 057 Braga, Portugal
| | - Nelson Lima
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710 057 Braga, Portugal
| | | | - Sandrine Rousseaux
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| |
Collapse
|
8
|
Yang Q, Wang J, Zhang H, Li C, Zhang X. Ochratoxin A is degraded by Yarrowia lipolytica and generates non-toxic degradation products. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.1911] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mycotoxin ochratoxin A (OTA) is a common contaminant of various plant-derived foods and feeds. However, methods for complete decontamination remain to be established. Recently, biological approaches for mycotoxin removal using various species of yeast have been explored. In the present study, we investigated the efficacy of OTA degradation by the yeast Yarrowia lipolytica under various conditions, altering yeast concentration, temperature, pH, and concentration of OTA in order to determine the optimal requirements of this species. At a yeast concentration of 108 cells/ml, the degradation rate was higher than that observed at any other concentration and, after 24 h, the OTA concentration was reduced to almost half of the initial level introduced to the culture. Further, Y. lipolytica cultured at 28 °C showed the highest level of OTA degradation. Similarly, the culture performed optimally at a pH of 4. The initial concentration of OTA also affected the ability of the yeast to degrade OTA, with the level of degradation being the highest when the initial OTA concentration was 0.1 μg/ml. Moreover, we also tested the toxicity of the OTA biodegradation products using HepG2 cells to determine the physiological applicability of this yeast species in the food industry and observed that these products were notably less toxic than non-degraded OTA. Y. lipolytica effectively reduced natural decay incidence of grapes, and had no negative effect to the storage quality of grape fruits. Taken together, these data suggest that Y. lipolytica could be a viable OTA contamination prevention/treatment option and additional research concerning its commercial use is warranted.
Collapse
Affiliation(s)
- Q. Yang
- School of Food and Biological Engineering, Jiangsu University, Xuefu road 301, Zhenjiang 212013, Jiangsu, China P.R
| | - J. Wang
- School of Food and Biological Engineering, Jiangsu University, Xuefu road 301, Zhenjiang 212013, Jiangsu, China P.R
| | - H. Zhang
- School of Food and Biological Engineering, Jiangsu University, Xuefu road 301, Zhenjiang 212013, Jiangsu, China P.R
| | - C. Li
- School of Food and Biological Engineering, Jiangsu University, Xuefu road 301, Zhenjiang 212013, Jiangsu, China P.R
| | - X. Zhang
- School of Food and Biological Engineering, Jiangsu University, Xuefu road 301, Zhenjiang 212013, Jiangsu, China P.R
| |
Collapse
|
9
|
Gentile F, La Torre GL, Potortì AG, Saitta M, Alfa M, Dugo G. Organic wine safety: UPLC-FLD determination of Ochratoxin A in Southern Italy wines from organic farming and winemaking. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
|
11
|
|
12
|
|