1
|
Stutt ROJH, Castle MD, Markwell P, Baker R, Gilligan CA. An integrated model for pre- and post-harvest aflatoxin contamination in maize. NPJ Sci Food 2023; 7:60. [PMID: 37980424 PMCID: PMC10657429 DOI: 10.1038/s41538-023-00238-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023] Open
Abstract
Aflatoxin contamination caused by colonization of maize by Aspergillus flavus continues to pose a major human and livestock health hazard in the food chain. Increasing attention has been focused on the development of models to predict risk and to identify effective intervention strategies. Most risk prediction models have focused on elucidating weather and site variables on the pre-harvest dynamics of A. flavus growth and aflatoxin production. However fungal growth and toxin accumulation continue to occur after harvest, especially in countries where storage conditions are limited by logistical and cost constraints. In this paper, building on previous work, we introduce and test an integrated meteorology-driven epidemiological model that covers the entire supply chain from planting to delivery. We parameterise the model using approximate Bayesian computation with monthly time-series data over six years for contamination levels of aflatoxin in daily shipments received from up to three sourcing regions at a high-volume maize processing plant in South Central India. The time series for aflatoxin levels from the parameterised model successfully replicated the overall profile, scale and variance of the historical aflatoxin datasets used for fitting and validation. We use the model to illustrate the dynamics of A. flavus growth and aflatoxin production during the pre- and post-harvest phases in different sourcing regions, in short-term predictions to inform decision making about sourcing supplies and to compare intervention strategies to reduce the risks of aflatoxin contamination.
Collapse
Affiliation(s)
- Richard O J H Stutt
- Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| | - Matthew D Castle
- Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
- Cambridge Centre for Data-Driven Discovery, Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Peter Markwell
- Mars Global Food Safety Center, Mars Inc., Yanqi Economic Development Zone, Huairou, Beijing, China
| | - Robert Baker
- Mars Global Food Safety Center, Mars Inc., Yanqi Economic Development Zone, Huairou, Beijing, China
| | - Christopher A Gilligan
- Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
2
|
Chang J, Luo H, Li L, Zhang J, Harvey J, Zhao Y, Zhang G, Liu Y. Mycotoxin risk management in maize gluten meal. Crit Rev Food Sci Nutr 2023; 64:7687-7706. [PMID: 36995226 DOI: 10.1080/10408398.2023.2190412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Maize gluten meal (MGM) is a by-product of maize starch and ethanol, produced by the wet milling process. Its high protein content makes it a preferred ingredient in feed. Given the high prevalence of mycotoxins in maize globally, they pose a significant challenge to use of MGM for feed: wet milling could concentrate certain mycotoxins in gluten components, and mycotoxin consumption affects animal health and can contaminate animal-source foods. To help confront this issue, this paper summarizes mycotoxin occurrence in maize, distribution during MGM production and mycotoxin risk management strategies for MGM through a comprehensive literature review. Available data emphasize the importance of mycotoxin control in MGM and the necessity of a systematic control approach, which includes: good agriculture practices (GAP) in the context of climate change, degradation of mycotoxin during MGM processing with SO2 and lactic acid bacteria (LAB) and the prospect of removing or detoxifying mycotoxins using emerging technologies. In the absence of mycotoxin contamination, MGM represents a safe and economically critical component of global animal feed. With a holistic risk assessment-based, seed-to-MGM-feed systematic approach to reducing and decontaminating mycotoxins in maize, costs and negative health impacts associated with MGM use in feed can be effectively reduced.
Collapse
Affiliation(s)
- Jinghua Chang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Hao Luo
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Lin Li
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Junnan Zhang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Jagger Harvey
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Yueju Zhao
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Guangtao Zhang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
3
|
Xu F, Baker R, Whitaker T, Luo H, Zhao Y, Stevenson A, Boesch C, Zhang G. Review of good agricultural practices for smallholder maize farmers to minimise aflatoxin contamination. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2021.2685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Maize is consumed world-wide as staple food, livestock feed, and industrial raw material. However, it is susceptible to fungal attack and at risk of aflatoxin contamination under certain conditions. Such contamination is a serious threat to human and animal health. Ensuring that the maize used by food industry meets standards for aflatoxin levels requires significant investment across the supply chain. Good Agricultural Practices (GAP) form a critical part of a broader, integrated strategy for reduction of aflatoxin contamination. We reviewed and summarised the GAP of maize that would be effective and practicable for aflatoxin control within high-risk regions for smallholder farmers. The suggested practicable GAP for smallholder farmers were: use of drought-tolerant varieties; timely harvesting before physiological maturity; sorting to remove damaged ears and those having poor husk covering; drying properly to 13% moisture content; storage in suitable conditions to keep the crop clean and under condition with minimally proper aeration, or ideally under hermetic conditions. This information is intended to provide guidance for maize growers that will help reduce aflatoxin in high-risk regions, with a specific focus on smallholder farmers. Following the proposed guidelines would contribute to the reduction of aflatoxin contamination during pre-harvest, harvest, and post-harvest stages of the maize value chain.
Collapse
Affiliation(s)
- F. Xu
- Mars Global Food Safety Center, 2 Yanqi North Road, Yanqi Economic Development Zone, Huairou, 101407 Beijing, China P.R
| | - R.C. Baker
- Mars Global Food Safety Center, 2 Yanqi North Road, Yanqi Economic Development Zone, Huairou, 101407 Beijing, China P.R
| | - T.B. Whitaker
- North Carolina State University, P.O. Box 7625, Raleigh, NC 27695-7625, USA
| | - H. Luo
- Mars Global Food Safety Center, 2 Yanqi North Road, Yanqi Economic Development Zone, Huairou, 101407 Beijing, China P.R
| | - Y. Zhao
- Mars Global Food Safety Center, 2 Yanqi North Road, Yanqi Economic Development Zone, Huairou, 101407 Beijing, China P.R
| | - A. Stevenson
- Mars Global Food Safety Center, 2 Yanqi North Road, Yanqi Economic Development Zone, Huairou, 101407 Beijing, China P.R
| | - C.J. Boesch
- Food Systems and Food Safety Division, Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - G. Zhang
- Mars Global Food Safety Center, 2 Yanqi North Road, Yanqi Economic Development Zone, Huairou, 101407 Beijing, China P.R
| |
Collapse
|