1
|
Kp A, Kaliaperumal K, Sekar D. microRNAs and their therapeutic strategy in phase I and phase II clinical trials. Epigenomics 2024; 16:259-271. [PMID: 38312027 DOI: 10.2217/epi-2023-0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
miRNAs play a crucial therapeutic role in diseases such as cancer, diabetes and viral infections, with around 1900 identified in the human genome. Some have progressed to clinical trials, and miRNA mimics and miRNA inhibitors are pivotal therapeutic molecules undergoing evaluation. The review delves into various miRNA-associated clinical trials, emphasizing their precision in targeting specific genes, modulating disease pathways and diagnostic potential. This underscores the importance of miRNA therapy, foreseeing innovations in precision medicine techniques for diverse diseases. The future envisions improved delivery systems addressing challenges like immunogenicity and digestion, while a comprehensive miRNA-based omics database could guide the development of tailored antisense miRNAs, further advancing precision medicine strategies.
Collapse
Affiliation(s)
- Ameya Kp
- RNA Biology Lab, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India
| | - Kumaravel Kaliaperumal
- Unit of Biomaterials Research, Department of Orthodontics, Saveetha Dental College, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Durairaj Sekar
- RNA Biology Lab, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India
| |
Collapse
|
2
|
Preeti, Sambhakar S, Saharan R, Narwal S, Malik R, Gahlot V, Khalid A, Najmi A, Zoghebi K, Halawi MA, Albratty M, Mohan S. Exploring LIPIDs for their potential to improves bioavailability of lipophilic drugs candidates: A review. Saudi Pharm J 2023; 31:101870. [PMID: 38053738 PMCID: PMC10694332 DOI: 10.1016/j.jsps.2023.101870] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
This review aims to provide a thorough examination of the benefits, challenges, and advancements in utilizing lipids for more effective drug delivery, ultimately contributing to the development of innovative approaches in pharmaceutical science. Lipophilic drugs, characterized by low aqueous solubility, present a formidable challenge in achieving effective delivery and absorption within the human body. To address this issue, one promising approach involves harnessing the potential of lipids. Lipids, in their diverse forms, serve as carriers, leveraging their unique capacity to enhance solubility, stability, and absorption of these challenging drugs. By facilitating improved intestinal solubility and selective lymphatic absorption of porously permeable drugs, lipids offer an array of possibilities for drug delivery. This versatile characteristic not only bolsters the pharmacological efficacy of drugs with low bioavailability but also contributes to enhanced therapeutic performance, ultimately reducing the required dose size and associated costs. This comprehensive review delves into the strategic formulation approaches that employ lipids as carriers to ameliorate drug solubility and bioavailability. Emphasis is placed on the critical considerations of lipid type, composition, and processing techniques when designing lipid-based formulations. This review meticulously examines the multifaceted challenges that come hand in hand with lipid-based formulations for lipophilic drugs, offering an insightful perspective on future trends. Regulatory considerations and the broad spectrum of potential applications are also thoughtfully discussed. In summary, this review presents a valuable repository of insights into the effective utilization of lipids as carriers, all aimed at elevating the bioavailability of lipophilic drugs.
Collapse
Affiliation(s)
- Preeti
- Banasthali Vidyapith, Vanasthali Road, Aliyabad, Rajasthan 304022, India
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar, Haryana 122506, India
| | - Sharda Sambhakar
- Banasthali Vidyapith, Vanasthali Road, Aliyabad, Rajasthan 304022, India
| | - Renu Saharan
- Maharishi Markandeswar Deemed to be University, Mullana, Ambala, Haryana 133203, India
| | - Sonia Narwal
- Panipat Institute of Engineering & Technology, Department of Pharmacy, GT Road, Samalkha, Panipat 132102, Haryana, India
| | - Rohit Malik
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar, Haryana 122506, India
| | - Vinod Gahlot
- HIMT College of Pharmacy, Knowledge Park - 1, Greater Noida, District - Gautam Buddh Nagar, UP 201310, India
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum 11111, Sudan
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Maryam A. Halawi
- Department of Cinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| |
Collapse
|
3
|
Shukla E, Kara DD, Katikala T, Rathnanand M. Self-nanoemulsifying drug delivery systems (SNEDDS) of anti-cancer drugs: a multifaceted nanoplatform for the enhancement of oral bioavailability. Drug Dev Ind Pharm 2023; 49:1-16. [PMID: 36803270 DOI: 10.1080/03639045.2023.2182124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
OBJECTIVE A significant problem faced by the health care industry today is that though there are numerous drugs available to tackle diseases like cancer, their intrinsic properties make it difficult to be delivered to patients in a feasible manner. One of the key players that have helped researchers overcome poor solubility and permeability of drugs is Nanotechnology, this article further iterates on the same. SIGNIFICANCE Nanotechnology is used as an umbrella term in pharmaceutics and describes under it multiple technologies. Upcoming nanotechnology is a Self Nanoemulsifying System which is considered to be a futuristic delivery system both due to its scientific simplicity and relative ease of patient delivery. METHODS Self-Nano Emulsifying Drug Delivery Systems (SNEDDS) are homogenous lipidic concoctions containing the drug solubilized in the oil phase and surfactants. The choice of components depends on the physicochemical properties of the drugs, the solubilization capability of oils and the physiological fate of the drug. The article contains further details of various methodologies that have been adopted by scientists to formulate and optimize such systems in order to make anticancer drugs orally deliverable. RESULTS The results that have been generated by scientists across the globe have been summarized in the article and all of the data supports the claim that SNEDDS significantly enhance the solubility and bioavailability of hydrophobic anticancer drugs. CONCLUSIONS This article mainly provides the application of SNEDDS in cancer therapy and concludes to provide a step for the oral administration of several BCS class II and IV anticancer drugs.
Collapse
Affiliation(s)
- Eesha Shukla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Divya Dhatri Kara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Tanvi Katikala
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
4
|
Upaganlawar A, Polshettiwar S, Raut S, Tagalpallewar A, Pande V. Effective Cancer Management: Inimitable Role of Phytochemical Based Nano- Formulations. Curr Drug Metab 2022; 23:869-881. [PMID: 36065928 DOI: 10.2174/1389200223666220905162245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Global cancer statistics defines the severity of disease even after significant research worldwide. PROBLEM Failure of the currently available treatment approaches, including surgery, radiation therapy and traditional chemotherapy. AIM The aim of this review is to discuss the role of phytochemical based nano-formulations for treatment of cancer. DISCUSSION In the past few decades, phytochemicals have gained popularity for acting as a potential anticancer treatment with low systemic toxicity, especially in terms of cell cycle control and cancer cell killing. Natural resources, with their immense structural variety, serve as a vital source of fresh, therapeutically useful new chemical entities for the treatment of cancer. Vinca alkaloids (VCR), vinblastine, vindesine, vinorelbine, taxanes (PTX), podophyllotoxin and its derivatives (etoposide (ETP), teniposide, camptothecin (CPT) and its derivatives (topotecan, irinotecan), anthracyclines (doxorubicin, daunorubicin, epirubicin, idarubicin, as natural products or their derivatives account for half of all anticancer drugs approved worldwide, and they have been developed utilising the knowledge learned from the natural small molecules or macromolecules. Trabectedin, an epothilone derivative, ixabepilone, and temsirolimus, three new anticancer medications launched in 2007, were derived from microbial origins. Current therapy regimens require selective drug targeting to enhance efficacy against cancer cells while normal cells remain unharmed. Modified medications and systems for drug delivery based on nanotechnology are in the process of being explored and launched in the industry for enhanced therapy and management of cancer, along with promising outcomes. Many obstacles related to cancer cell drug delivery can be overcome by using nano-particulate drug carriers, including enhancing the stability and solubility of the drug, prolonging half-lives of the drug in the blood, decreasing side effects to undesired organs, and increasing medication concentration at the desired site. The scientific initiatives and studies concerning the use of nanotechnology for some selective compounds derived from plants are discussed in this review article. CONCLUSION The present review highlights the phytochemical-based nanoformulations and their strategies in the development of novel systems of drug delivery such as nano-liposomes, functionalized nanoparticles (NPs), and polymer nano-conjugates, SNEDDS (Self nano emulsifying drug delivery system) as this review paper depicts, as well as their rewards over conventional systems of drug delivery, as evidenced by improved biological activity depicted in their in vitro and in vivo anticancer assays.
Collapse
Affiliation(s)
- Aman Upaganlawar
- SNJBs SSDJ College of Pharmacy, Neminagar, Chandwad, Maharashtra, India
| | - Satish Polshettiwar
- School of Pharmacy Dr.Vishwanath Karad MIT World Peace University, Survey No. 124, Kothrud, Pune, Maharashtra 411038, India
| | - Sushil Raut
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune-India
| | - Amol Tagalpallewar
- School of Pharmacy Dr.Vishwanath Karad MIT World Peace University, Survey No. 124, Kothrud, Pune, Maharashtra 411038, India
| | - Vishal Pande
- N. N. Sattha College of Pharmacy, Ahmednagar, Maharashtra, India
| |
Collapse
|
5
|
Influence of Oil Phase Surface Properties on the Physicochemical Characteristics of Meloxicam Self-microemulsifying Drug Delivery Systems. J Pharm Innov 2022. [DOI: 10.1007/s12247-021-09571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Development and Characterization of Nanoemulsions for Ophthalmic Applications: Role of Cationic Surfactants. MATERIALS 2021; 14:ma14247541. [PMID: 34947136 PMCID: PMC8706710 DOI: 10.3390/ma14247541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
The eye is a very complex organ comprising several physiological and physical barriers that compromise drug absorption into deeper layers. Nanoemulsions are promising delivery systems to be used in ocular drug delivery due to their innumerous advantages, such as high retention time onto the site of application and the modified release profile of loaded drugs, thereby contributing to increasing the bioavailability of drugs for the treatment of eye diseases, in particular those affecting the posterior segment. In this review, we address the main factors that govern the development of a suitable nanoemulsion formulation for eye administration to increase the patient’s compliance to the treatment. Appropriate lipid composition and type of surfactants (with a special emphasis on cationic compounds) are discussed, together with manufacturing techniques and characterization methods that are instrumental for the development of appropriate ophthalmic nanoemulsions.
Collapse
|
7
|
Kumar M, Bishnoi RS, Shukla AK, Jain CP. Development and optimization of drug-loaded nanoemulsion system by phase inversion temperature (PIT) method using Box-Behnken design. Drug Dev Ind Pharm 2021; 47:977-989. [PMID: 34278910 DOI: 10.1080/03639045.2021.1957920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The objective of the present investigation was to develop a stable and optimized drug-loaded nanoemulsion system using the phase inversion temperature (PIT) method. SIGNIFICANCE The PIT method has been widely used for the development of food-grade nanoemulsion systems. For the first time, a simple and cost-effective, PIT method was used for the development of a stable drug-loaded nanoemulsion system. METHODS Box-Behnken experimental design was used for the development of an optimized drug-loaded nanoemulsion system by the PIT method. The independent variables were optimized for responses by using the desirability function. The hydrophobic drug, benidipine was used as a modal drug. Optimized oil phase (blend of long-chain triglycerides oil, medium-chain triglycerides oil and essential oil) was used for the development of oil in water (O/W) nanoemulsion system. RESULTS Optimum nanoemulsion formulation was stable, transparent and contained 50% of oil to surfactant percentage with a droplet size of 96.57 ± 1.61 nm. The optimum formulation also showed higher in-vitro drug diffusion from dialysis membrane as compared to the marketed formulation. Nanoemulsion droplets were observed as spherical in the transmission electron microscopy (TEM) images. Box-Behnken statistical analysis revealed that all the independent variables had a significant impact on characteristics of nanoemulsion and the predicated value of independent variables was found to be valid. CONCLUSION It was concluded that the PIT method produces a stable and efficient drug-loaded nanoemulsion system. Further, the optimized oil phase can be used as an alternative to costly, commercial medium-chain triglycerides (MCT) oils, for the development of a stable nanoemulsion system.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmacy, Mohanlal Sukhadia University, Udaipur, India
| | - Ram Singh Bishnoi
- Department of Pharmacy, Mohanlal Sukhadia University, Udaipur, India
| | - Ajay Kumar Shukla
- Department of Pharmacy, Mohanlal Sukhadia University, Udaipur, India
| | | |
Collapse
|
8
|
Tran P, Park JS. Recent trends of self-emulsifying drug delivery system for enhancing the oral bioavailability of poorly water-soluble drugs. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00516-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Chakraborty C, Sharma AR, Sharma G, Lee SS. Therapeutic advances of miRNAs: A preclinical and clinical update. J Adv Res 2021; 28:127-138. [PMID: 33364050 PMCID: PMC7753224 DOI: 10.1016/j.jare.2020.08.012] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
miRNAs, a class of small endogenous RNAs, are one of the essential biopharmaceuticals which are in commercial spans as next-generation medicine in recent times. A snapshot of the current scenario regarding the miRNAs as biopharmaceuticals have been discussed. In this work, biopharmaceutical companies working with miRNAs and the current status of preclinical/clinical trials about miRNA therapeutics have been reviewed. Finally, recent updates on the absorption, distribution, metabolism, and excretion (ADME), as well as a delivery system of miRNAs, have been illustrated.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal 700126, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| |
Collapse
|
10
|
Abou Assi R, M. Abdulbaqi I, Seok Ming T, Siok Yee C, A. Wahab H, Asif SM, Darwis Y. Liquid and Solid Self-Emulsifying Drug Delivery Systems (SEDDs) as Carriers for the Oral Delivery of Azithromycin: Optimization, In Vitro Characterization and Stability Assessment. Pharmaceutics 2020; 12:E1052. [PMID: 33158058 PMCID: PMC7693798 DOI: 10.3390/pharmaceutics12111052] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Azithromycin (AZM) is a macrolide antibiotic used for the treatment of various bacterial infections. The drug is known to have low oral bioavailability (37%) which may be attributed to its relatively high molecular weight, low solubility, dissolution rate, and incomplete intestinal absorption. To overcome these drawbacks, liquid (L) and solid (S) self-emulsifying drug delivery systems (SEDDs) of AZM were developed and optimized. Eight different pseudo-ternary diagrams were constructed based on the drug solubility and the emulsification studies in various SEDDs excipients at different surfactant to co-surfactant (Smix) ratios. Droplet size (DS) < 150 nm, dispersity (Đ) ≤ 0.7, and transmittance (T)% > 85 in three diluents of distilled water (DW), 0.1 mM HCl, and simulated intestinal fluids (SIF) were considered as the selection criteria. The final formulations of L-SEDDs (L-F1(H)), and S-SEDDs (S-F1(H)) were able to meet the selection requirements. Both formulations were proven to be cytocompatible and able to open up the cellular epithelial tight junctions (TJ). The drug dissolution studies showed that after 5 min > 90% and 52.22% of the AZM was released from liquid and solid SEDDs formulations in DW, respectively, compared to 11.27% of the pure AZM, suggesting the developed SEDDs may enhance the oral delivery of the drug. The formulations were stable at refrigerator storage conditions.
Collapse
Affiliation(s)
- Reem Abou Assi
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
- The Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun kupri, Kirkuk 36001, Iraq
| | - Ibrahim M. Abdulbaqi
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
- The Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun kupri, Kirkuk 36001, Iraq
| | - Toh Seok Ming
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
| | - Chan Siok Yee
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
| | - Habibah A. Wahab
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
| | - Shaik Mohammed Asif
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
- Pharma Research, Wockhardt Research Center, Aurangabad 431002, India
| | - Yusrida Darwis
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
| |
Collapse
|
11
|
Singh M, Bharadwaj S, Lee KE, Kang SG. Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery. J Control Release 2020; 328:895-916. [PMID: 33069743 DOI: 10.1016/j.jconrel.2020.10.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022]
Abstract
The eye is the specialized part of the body and is comprised of numerous physiological ocular barriers that limit the drug absorption at the action site. Regardless of various efforts, efficient topical ophthalmic drug delivery remains unsolved, and thus, it is extremely necessary to advance the contemporary treatments of ocular disorders affecting the anterior and posterior cavities. Nowadays, the advent of nanotechnology-based multicomponent nanoemulsions for ophthalmic drug delivery has gained popularity due to the enhancement of ocular penetrability, improve bioavailability, increase solubility, and stability of lipophilic drugs. Nanoemulsions offer the sustained/controlled drug release and increase residence time which depend on viscosity, compositions, and stabilization process, etc.; hence, decrease the instillation frequency and improve patient compliance. Further, due to the nanosized of nanoemulsions, the sterilization process is easy as conventional solutions and cause no blur vision. The review aims to summarizes the various ocular barriers, manufacturing techniques, possible mechanisms to the retention and deep penetration into the eye, and appropriate excipients with their under-lying selection principles to prevent destabilization of nanoemulsions. This review also discusses the characterization parameters of ocular drug delivery to spike the interest of those contemplating a foray in this field. Here, in short, nanoemulsions are abridged with concepts to design clinically advantageous ocular drug delivery.
Collapse
Affiliation(s)
- Mahendra Singh
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Shiv Bharadwaj
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Kyung Eun Lee
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Stemforce, 313 Institute of Industrial Technology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sang Gu Kang
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
12
|
Mundada VP, Patel MH, Mundada PK, Sawant KK. Enhanced bioavailability and antihypertensive activity of nisoldipine loaded nanoemulsion: optimization, cytotoxicity and uptake across Caco-2 cell line, pharmacokinetic and pharmacodynamic studies. Drug Dev Ind Pharm 2020; 46:376-387. [PMID: 32031412 DOI: 10.1080/03639045.2020.1724128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Objective: The present study explored the antihypertensive activity of nisoldipine in oil in water nanoemulsion to improve its oral bioavailability via intestinal lymphatic uptake.Methods: Nanoemulsion was prepared by ultrasonication technique using Peceol, Cremophor EL and Transcutol HP as oil, surfactant and cosurfactant respectively. Optimization was done employing 32 full factorial design. The developed formulation was assessed for in vitro,cell line, ex vivo and in vivo studies.Results: The experimental results indicated homogeneity of the nanoemulsion with globule size of 62.35 ± 2.55 nm and PDI value of 0.108 ± 0.01 with negative zeta potential (-26.2 ± 3.6 mV). Transmission electron microscopy showed spherical oil globules morphology. The in vitro diffusion study showed significant increase in drug release from NE formulations (98.51 ± 2.64%) as compared to plain drug dispersion (29.73 ± 2.15%) in 0.1 N HCl + 0.5% SLS medium. Moreover, higher quantitative and qualitative uptake of nanoemulsion via Caco-2 cells showed superior intestinal absorption and improved therapeutic activity of nisoldipine when compared to drug dispersion. Pharmacokinetic and pharmacodynamic study confirmed significantly (p ˂ 0.05) greater bioavailability and antihypertensive activity of nisoldipine nanoemulsion when compared to its dispersion. These results are visualized in abstract figure.Conclusion: Thus, prepared nanoemulsion showed potential as oral delivery system for nisoldipine with superior oral bioavailability and therapeutic efficacy over drug dispersion.
Collapse
Affiliation(s)
- Veenu P Mundada
- Drug Delivery Research Laboratory, Centre of Relevance and Excellence in NDDS, Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Mitali H Patel
- Drug Delivery Research Laboratory, Centre of Relevance and Excellence in NDDS, Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Piyush K Mundada
- Drug Delivery Research Laboratory, Centre of Relevance and Excellence in NDDS, Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Krutika K Sawant
- Drug Delivery Research Laboratory, Centre of Relevance and Excellence in NDDS, Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
13
|
Giannousi K, Koutroumpis E, Georgiadou V, Karagkounis V, Dendrinou-Samara C. Nanoplatforms of Manganese Ferrite Nanoparticles Functionalized with Anti-Inflammatory Drugs. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kleoniki Giannousi
- Laboratory of Inorganic Chemistry; Department of Chemistry; Aristotle University of Thessaloniki; 54124 Thessaloniki Greece
| | - Emmanouil Koutroumpis
- Laboratory of Inorganic Chemistry; Department of Chemistry; Aristotle University of Thessaloniki; 54124 Thessaloniki Greece
| | - Violetta Georgiadou
- Laboratory of Inorganic Chemistry; Department of Chemistry; Aristotle University of Thessaloniki; 54124 Thessaloniki Greece
| | - Vasilis Karagkounis
- Laboratory of Inorganic Chemistry; Department of Chemistry; Aristotle University of Thessaloniki; 54124 Thessaloniki Greece
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry; Department of Chemistry; Aristotle University of Thessaloniki; 54124 Thessaloniki Greece
| |
Collapse
|
14
|
Chaudhari KS, Akamanchi KG. Novel bicephalous heterolipid based self-microemulsifying drug delivery system for solubility and bioavailability enhancement of efavirenz. Int J Pharm 2019; 560:205-218. [PMID: 30742985 DOI: 10.1016/j.ijpharm.2019.01.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
There is an increasing demand for new lipidic biocompatible and safe materials for self-microemulsifying drug delivery system (SMEDDS). The present work reports the synthesis, characterization, oral mucosal irritation study, and application of novel erucic acid ester of G0-PETIM dendron based bicephalous heterolipid (BHL) as an oil phase in SMEDDS using Efavirenz (EFA), a BCS class II drug with poor water solubility and poor bioavailability. Studies were conducted to optimize EFA SMEDDS using different ratios of the BHL as oil phase and surfactant: co-surfactant weight ratios (Km). At Km (1.5), the microemulsion was spontaneously formed in water with mean globule size of 22.78 ± 0.25 nm and polydispersity index (PDI) of 0.23 ± 0.031 with high drug loading efficiency of 80.35 ± 3.1%. Standard stability tests were performed on EFA SMEDDS and the results indicated it to be highly stable. The in vitro dissolution profile of EFA SMEDDS showed >95% of the drug release within an hour and expectedly substantial enhancement in in vivo bioavailability was observed; almost 6-fold increase in bioavailability with parameters Cmax 5.2 µg/mL, Tmax 3 h, and AUC(0-∞) 23.48 μg/h/mL respectively as compared the plain suspension of the drug. In conclusion, the BHL can be used effectively as an oil phase in SMEDDS to enhance solubility and bioavailability of BCS Class II drugs. Further, it holds, in general, a great promise as a new excipient for solubility and bioavailability enhancements.
Collapse
Affiliation(s)
- Kapil S Chaudhari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India
| | - Krishnacharya G Akamanchi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
15
|
Patel V, Lalani R, Bardoliwala D, Ghosh S, Misra A. Lipid-Based Oral Formulation Strategies for Lipophilic Drugs. AAPS PharmSciTech 2018; 19:3609-3630. [PMID: 30255474 DOI: 10.1208/s12249-018-1188-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/14/2018] [Indexed: 01/22/2023] Open
Abstract
Partition coefficient (log P) is a key physicochemical characteristic of lipophilic drugs which plays a significant role in formulation development for oral administration. Lipid-based formulation strategies can increase lymphatic transport of these drugs and can enhance bioavailability many folds. The number of lipophilic drugs in pharmacopoeias and under discovery are continuously increasing and making the job of the formulation scientist difficult to develop suitable formulation of these drugs due to potent nature and water insolubility of these drugs. Recently, many natural and synthetic lipids are appearing in the market which are helpful in the development of lipid-based formulations of these types of drugs having enhanced solubility and bioavailability. One such reason for this enhanced bioavailability is the accessibility of the lymphatic transport as well as avoidance of first-pass effect. This review discusses the impact of lipophilicity in enhancing the intestinal lymphatic drug transport thereby reducing first-pass metabolism. The most appropriate strategy for developing a lipid-based formulation depending upon the degree of lipophilicity has been critically discussed and provides information on how to develop optimum formulation. Various formulation strategies are discussed in-depth by classifying lipid-based oral drug delivery systems with case studies of few marketed formulations with challenges and opportunities for the future of the formulations.
Collapse
|
16
|
Montenegro L, Turnaturi R, Parenti C, Pasquinucci L. Idebenone: Novel Strategies to Improve Its Systemic and Local Efficacy. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E87. [PMID: 29401722 PMCID: PMC5853719 DOI: 10.3390/nano8020087] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/27/2018] [Accepted: 01/30/2018] [Indexed: 12/16/2022]
Abstract
The key role of antioxidants in treating and preventing many systemic and topical diseases is well recognized. One of the most potent antioxidants available for pharmaceutical and cosmetic use is Idebenone (IDE), a synthetic analogue of Coenzyme Q10. Unfortunately, IDE's unfavorable physicochemical properties such as poor water solubility and high lipophilicity impair its bioavailability after oral and topical administration and prevent its parenteral use. In recent decades, many strategies have been proposed to improve IDE effectiveness in the treatment of neurodegenerative diseases and skin disorders. After a brief description of IDE potential therapeutic applications and its pharmacokinetic and pharmacodynamic profile, this review will focus on the different approaches investigated to overcome IDE drawbacks, such as IDE incorporation into different types of delivery systems (liposomes, cyclodextrins, microemulsions, self-micro-emulsifying drug delivery systems, lipid-based nanoparticles, polymeric nanoparticles) and IDE chemical modification. The results of these studies will be illustrated with emphasis on the most innovative strategies and their future perspectives.
Collapse
Affiliation(s)
- Lucia Montenegro
- Department of Drug Sciences, Pharmaceutical Technology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Rita Turnaturi
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Carmela Parenti
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Lorella Pasquinucci
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
17
|
Savla R, Browne J, Plassat V, Wasan KM, Wasan EK. Review and analysis of FDA approved drugs using lipid-based formulations. Drug Dev Ind Pharm 2017; 43:1743-1758. [PMID: 28673096 DOI: 10.1080/03639045.2017.1342654] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Lipid-based drug delivery systems (LBDDS) are one of the most studied bioavailability enhancement technologies and are utilized in a number of U.S. Food and Drug Administration (FDA) approved drugs. While researchers have used several general rules of thumb to predict which compounds are likely to benefit from LBDDS, formulation of lipid systems is primarily an empiric endeavor. One of the challenges is that these rules of thumb focus in different areas and are used independently of each other. The Developability Classification System attempts to link physicochemical characteristics with possible formulation strategies. Although it provides a starting point, the formulator still has to empirically develop the formulation. This article provides a review and quantitative analysis of the molecular properties of these approved drugs formulated as lipid systems and starts to build an approach that provides more directed guidance on which type of lipid system is likely to be the best for a particular drug molecule.
Collapse
Affiliation(s)
- Ronak Savla
- a Catalent Pharma Solutions , Somerset , NJ , USA
| | - Jeff Browne
- b Catalent Pharma Solutions , St. Petersburg , FL , USA
| | | | - Kishor M Wasan
- d College of Pharmacy and Nutrition , University of Saskatchewan , Saskatoon , Canada
| | - Ellen K Wasan
- d College of Pharmacy and Nutrition , University of Saskatchewan , Saskatoon , Canada
| |
Collapse
|
18
|
Potential and future scope of nanoemulgel formulation for topical delivery of lipophilic drugs. Int J Pharm 2017; 526:353-365. [PMID: 28461261 DOI: 10.1016/j.ijpharm.2017.04.068] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 11/21/2022]
Abstract
The Nanoemulgel drug delivery system is a formulation related intervention to improve the systemic delivery and therapeutic profile of lipophilic drugs. Nanoemulgel is an amalgamated formulation of two different systems in which nanoemulsion containing drug is incorporated into a gel base. The fusion of the two systems makes this formulation advantageous in several ways. Lipophilic drugs can be easily incorporated and the skin permeability of the incorporated drugs can be enhanced in several folds due to the finely distributed droplets of nanoemulsion phase. As a result, the pharmacokinetic and pharmacodynamic profiles of the lipophilic drugs are improved significantly. An increasing trend in topical nanoemulgel use in recent years has been noticed because of the better acceptability of the preparation to the patients due to their noninvasive delivery, avoidance of gastrointestinal side effects, easier applicability and good therapeutic and safety profile. Despite of having few limitations, nanoemulgel formulation can be considered as a potential and promising candidates for topical delivery of lipophilic drugs in the future. The aim of this review is to evaluate and report the current potential and future scope of nanoemulgel formulation for becoming an effective delivery system for poorly water soluble drugs. In this review, we have summarized and discussed the outcome of different studies on permeability, pharmacokinetic, pharmacodynamic and safety profile of the drugs delivered topically through nanoemulgel. Rationality of use along with the major challenges to overcome for nanoemulgel formulation has been discussed.
Collapse
|
19
|
Son GH, Lee BJ, Cho CW. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0320-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Knudson SE, Cummings JE, Bommineni GR, Pan P, Tonge PJ, Slayden RA. Formulation studies of InhA inhibitors and combination therapy to improve efficacy against Mycobacterium tuberculosis. Tuberculosis (Edinb) 2016; 101:8-14. [PMID: 27865404 DOI: 10.1016/j.tube.2016.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 11/28/2022]
Abstract
Previously, structure-based drug design was used to develop substituted diphenyl ethers with potency against the Mycobacterium tuberculosis (Mtb) enoyl-ACP reductase (InhA), however, the highly lipophilic centroid compound, SB-PT004, lacked sufficient efficacy in the acute murine Mtb infection model. A next generation series of compounds were designed with improved specificity, potency against InhA, and reduced cytotoxicity in vitro, but these compounds also had limited solubility. Accordingly, solubility and pharmacokinetics studies were performed to develop formulations for this class and other experimental drug candidates with high logP values often encountered in drug discovery. Lead diphenyl ethers were formulated in co-solvent and Self-Dispersing Lipid Formulations (SDLFs) and evaluated in a rapid murine Mtb infection model that assesses dissemination to and bacterial burden in the spleen. In vitro synergy studies were performed with the lead diphenyl ether compounds, SB-PT070 and SB-PT091, and rifampin (RIF), which demonstrated an additive effect, and that guided the in vivo studies. Combinatorial therapy in vivo studies with these compounds delivered in our Self-Micro Emulsifying Drug Delivery System (SMEDDS) resulted in an additional 1.4 log10 CFU reduction in the spleen of animals co-treated with SB-PT091 and RIF and an additional 1.7 log10 reduction in the spleen with animals treated with both SB-PT070 and RIF.
Collapse
Affiliation(s)
- Susan E Knudson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jason E Cummings
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Gopal R Bommineni
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Pan Pan
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Peter J Tonge
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Richard A Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
21
|
Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J Control Release 2016; 241:110-124. [DOI: 10.1016/j.jconrel.2016.09.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022]
|
22
|
Mathur M, Kusum Devi V. Potential of novel drug delivery strategies for the treatment of hyperlipidemia. J Drug Target 2016; 24:916-926. [PMID: 27029893 DOI: 10.3109/1061186x.2016.1172586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Emergence of hyperlipidemia in urban population of India and the world at large is very high and accounts to several fatal diseases. This condition is known to manifest elevated levels of lipids and/or lipoproteins. Serious limitations like inadequate solubility, less absorption, less bioavailability, ineffectiveness in lowering of cholesterol levels, patient incompliance and so on are noticed with majority of anti-hyperlipidemic drugs and dosage forms, which are used conventionally. To overcome these shortcomings, building technology platforms for development of appropriate dosage forms is the need of the hour. These efforts are required to maximize patient acceptability while maintaining safety, efficacy, accessibility and affordability. Hyperlipidemia, its types, etiology, pathophysiology and conventional dosage forms are discussed here. The current approaches and novel developments which illustrate controlled drug release and sustained therapeutic effect along with site specific and target oriented drug delivery with better patient compliance are also reviewed critically. Despite the incentives provided by the efforts of formulation scientists, there is still a need for implementation of pharmaceutical technologies that enable to combat limitations of anti-hyperlipidemic drugs and conventional dosage forms associated with it. The present review emphasize on applications of novel drug delivery systems in pharmacotherapy of anti-hyperlipidemic drugs demonstrating the advantages and disadvantages.
Collapse
Affiliation(s)
- Mahima Mathur
- a Department of Pharmaceutics, Al-Ameen College of Pharmacy , Bangalore , Karnataka , India
| | - V Kusum Devi
- a Department of Pharmaceutics, Al-Ameen College of Pharmacy , Bangalore , Karnataka , India
| |
Collapse
|
23
|
Giri T. Alginate Containing Nanoarchitectonics for Improved Cancer Therapy. NANOARCHITECTONICS FOR SMART DELIVERY AND DRUG TARGETING 2016:565-588. [DOI: 10.1016/b978-0-323-47347-7.00020-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Rodrigues LR. Microbial surfactants: Fundamentals and applicability in the formulation of nano-sized drug delivery vectors. J Colloid Interface Sci 2015; 449:304-16. [DOI: 10.1016/j.jcis.2015.01.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 12/29/2022]
|
25
|
Fu YC, Fu TF, Wang HJ, Lin CW, Lee GH, Wu SC, Wang CK. Aspartic acid-based modified PLGA-PEG nanoparticles for bone targeting: in vitro and in vivo evaluation. Acta Biomater 2014; 10:4583-4596. [PMID: 25050775 DOI: 10.1016/j.actbio.2014.07.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/05/2014] [Accepted: 07/14/2014] [Indexed: 12/27/2022]
Abstract
Nanoparticles (NP) that target bone tissue were developed using PLGA-PEG (poly(lactic-co-glycolic acid)-polyethylene glycol) diblock copolymers and bone-targeting moieties based on aspartic acid, (Asp)(n(1,3)). These NP are expected to enable the transport of hydrophobic drugs. The molecular structures were examined by (1)H NMR or identified using mass spectrometry and Fourier transform infrared (FT-IR) spectra. The NP were prepared using the water miscible solvent displacement method, and their size characteristics were evaluated using transmission electron microscopy (TEM) and dynamic light scattering. The bone targeting potential of the NP was evaluated in vitro using hydroxyapatite affinity assays and in vivo using fluorescent imaging in zebrafish and rats. It was confirmed that the average particle size of the NP was <200 nm and that the dendritic Asp3 moiety of the PLGA-PEG-Asp3 NP exhibited the best apatite mineral binding ability. Preliminary findings in vivo bone affinity assays in zebrafish and rats indicated that the PLGA-PEG-ASP3 NP may display increased bone-targeting efficiency compared with other PLGA-PEG-based NP that lack a dendritic Asp3 moiety. These NP may act as a delivery system for hydrophobic drugs, warranting further evaluation of the treatment of bone disease.
Collapse
Affiliation(s)
- Yin-Chih Fu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopaedics, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Fun Fu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Jen Wang
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
| | - Che-Wei Lin
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
| | - Gang-Hui Lee
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Cheng Wu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Kuang Wang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan.
| |
Collapse
|
26
|
Josef E, Bianco-Peled H. Sponges carrying self-microemulsifying drug delivery systems. Int J Pharm 2013; 458:208-17. [PMID: 24096300 DOI: 10.1016/j.ijpharm.2013.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/09/2013] [Accepted: 09/15/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Elinor Josef
- Inter-Departmental Program for Biotechnology, Technion - Israel Institute of Technology, Haifa 32000, Israel; The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
27
|
Abstract
In the present investigation an attempt was made to enhance the solubility and dissolution of poorly soluble drug, isotretinoin, by formulating self-nanoemulsifying drug delivery system (SNEDDS). Liquid SNEDDSs were prepared using Transcutol P as oil, Tween 80 as surfactant, and PEG 400 as cosurfactant. Pseudoternary phase diagrams were constructed to identify the efficient self-nanoemulsification region. The formulation with 40% oil (Transcutol P) and 60% surfactant: cosurfactant (Tween 80: PEG 400) ratio of 1 : 1 was optimized based on evaluation parameters for droplet size analysis, self-emulsification capacity, zeta potential, and in vitro drug release performance. The optimized system contains mean droplet size of 36.60 nm and zeta potential (ζ) −26.73 mV. The optimized formulation A1 was adsorbed onto Fujicalin to produce solid SNEDDS, which exhibited good flow properties and preserved the self-emulsification properties of liquid SNEDDS. The differential scanning calorimetry, FT-IR studies of solid SNEDDS revealed transformation of isotretinoin into molecularly dissolved state in the liquid SNEDDS. In vitro dissolution profiles showed that dissolution rate of ISN from solid SNEDDS was significantly greater as compared to pure drug.
Collapse
|