1
|
Sun T, Wang Y, Niu D, Geng Q, Qiu H, Song F, Keller NP, Tian J, Yang K. Peanut Rhizosphere Achromobacter xylosoxidans Inhibits Aspergillus flavus Development and Aflatoxin Synthesis by Inducing Apoptosis through Targeting the Cell Membrane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17572-17587. [PMID: 39069673 DOI: 10.1021/acs.jafc.4c05291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Contamination of crop seeds and feed with Aspergillus flavus and its associated aflatoxins presents a significant threat to human and animal health due to their hepatotoxic and carcinogenic properties. To address this challenge, researchers have screened for potential biological control agents in peanut soil and pods. This study identified a promising candidate, a strain of the nonpigmented bacterium, Achromobacter xylosoxidans ZJS2-1, isolated from the peanut rhizosphere in Zhejiang Province, China, exhibiting notable antifungal and antiaflatoxin activities. Further investigations demonstrated that ZJS2-1 active substances (ZAS) effectively inhibited growth at a MIC of 60 μL/mL and nearly suppressed AFB1 production by 99%. Metabolomic analysis revealed that ZAS significantly affected metabolites involved in cell wall and membrane biosynthesis, leading to compromised cellular integrity and induced apoptosis in A. flavus through the release of cytochrome c. Notably, ZAS targeted SrbA, a key transcription factor involved in ergosterol biosynthesis and cell membrane integrity, highlighting its crucial role in ZJS2-1's biocontrol mechanism. Moreover, infection of crop seeds and plant wilt caused by A. flavus can be efficiently alleviated by ZAS. Additionally, ZJS2-1 and ZAS demonstrated significant inhibitory effects on various Aspergillus species, with inhibition rates ranging from 80 to 99%. These findings highlight the potential of ZJS2-1 as a biocontrol agent against Aspergillus species, offering a promising solution to enhance food safety and protect human health.
Collapse
Affiliation(s)
- Tongzheng Sun
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yuxin Wang
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Dongjing Niu
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Qingru Geng
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Han Qiu
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Fengqin Song
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jun Tian
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Kunlong Yang
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
2
|
Sorlin P, Brivet E, Jean-Pierre V, Aujoulat F, Besse A, Dupont C, Chiron R, Jumas-Bilak E, Menetrey Q, Marchandin H. Prevalence and variability of siderophore production in the Achromobacter genus. Microbiol Spectr 2024; 12:e0295323. [PMID: 38315029 PMCID: PMC10913535 DOI: 10.1128/spectrum.02953-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/08/2023] [Indexed: 02/07/2024] Open
Abstract
Achromobacter spp. are opportunistic pathogens of environmental origin increasingly isolated in patients with underlying conditions like cystic fibrosis (CF). Despite recent advances, their virulence factors remain incompletely studied, and siderophore production has not yet been investigated in this genus. The aim of this study was to evaluate the production of siderophores in a large collection of Achromobacter spp. and evaluate the variability according to the origin of the strain and species. A total of 163 strains were studied, including 128 clinical strains (CF and non-CF patients) and 35 strains of environmental origin. Siderophores were quantified by the liquid chrome azurol-sulphonate assay. Species were identified by nrdA gene-based phylogeny. Strains were assigned to 20 species, with Achromobacter xylosoxidans being the most represented (51.5% of strains). Siderophore production was observed in 72.4% of the strains, with amounts ranging from 10.1% to 90% siderophore units. A significantly higher prevalence of siderophore-producing strains and greater production of siderophores were observed for clinical strains compared with strains of environmental origin. Highly variable observations were made according to species: A. xylosoxidans presented unique characteristics (one of the highest prevalence of producing strains and highest amounts produced, particularly by CF strains). Siderophores are important factors for bacterial growth commonly produced by members of the Achromobacter genus. The significance of the observations made during this study must be further investigated. Indeed, the differences observed according to species and the origin of strains suggest that siderophores may represent important determinants of the pathophysiology of Achromobacter spp. infections and also contribute to the particular epidemiological success of A. xylosoxidans in human infections. IMPORTANCE Achromobacter spp. are recognized as emerging opportunistic pathogens in humans with various underlying diseases, including cystic fibrosis (CF). Although their pathophysiological traits are increasingly studied, their virulence factors remain incompletely described. Particularly, siderophores that represent important factors of bacterial growth have not yet been studied in this genus. A population-based study was performed to explore the ability of members of the Achromobacter genus to produce siderophores, both overall and in relevant subgroups (Achromobacter species; strain origin, either clinical-from CF or non-CF patients-or environmental). This study provides original data showing that siderophore production is a common trait of Achromobacter strains, particularly observed among clinical strains. The major species, Achromobacter xylosoxidans, encompassed both one of the highest prevalence of siderophore-producing strains and strains producing the largest amounts of siderophores, particularly observed for CF strains. These observations may represent additional advantages accounting for the epidemiological success of this species.
Collapse
Affiliation(s)
- P. Sorlin
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - E. Brivet
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - V. Jean-Pierre
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Service de Microbiologie et d’Hygiène hospitalière, CHU de Nîmes, Nîmes, France
| | - F. Aujoulat
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - A. Besse
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - C. Dupont
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Laboratoire de Bactériologie, CHU de Montpellier, Montpellier, France
| | - R. Chiron
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Centre de Ressources et de Compétences de la Mucoviscidose, CHU de Montpellier, Montpellier, France
| | - E. Jumas-Bilak
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Laboratoire d’Écologie Microbienne Hospitalière, CHU de Montpellier, Montpellier, France
| | - Q. Menetrey
- INFINITE—Institute for Translational Research in Inflammation, Université de Lille, INSERM U1286, CHU Lille, Lille, France
| | - H. Marchandin
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Service de Microbiologie et d’Hygiène hospitalière, CHU de Nîmes, Nîmes, France
| |
Collapse
|
3
|
Deyett E, Ashworth VETM, DiSalvo B, Vieira FCF, Roper MC, Rolshausen PE. Genome Sequence Data of Achromobacter vitis, an Endophytic Species with Biocontrol Properties Against Xylella fastidiosa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:457-459. [PMID: 37578833 DOI: 10.1094/mpmi-08-22-0169-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Affiliation(s)
- Elizabeth Deyett
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, U.S.A
| | - Vanessa E T M Ashworth
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, U.S.A
| | - Biagio DiSalvo
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | | | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, U.S.A
| |
Collapse
|
4
|
Burnett AJN, Rodriguez E, Constable S, Lowrance B, Fish M, Weadge JT. WssI from the Gram-Negative Bacterial Cellulose Synthase is an O-acetyltransferase that Acts on Cello-oligomers with Several Acetyl Donor Substrates. J Biol Chem 2023:104849. [PMID: 37224964 PMCID: PMC10302187 DOI: 10.1016/j.jbc.2023.104849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
In microbial biofilms, bacterial cells are encased in a self-produced matrix of polymers (e.g., exopolysaccharides) that enable surface adherence and protect against environmental stressors. For example, the wrinkly spreader phenotype of Pseudomonas fluorescens colonizes food/water sources and human tissue to form robust biofilms that can spread across surfaces. This biofilm largely consists of bacterial cellulose produced by the cellulose synthase proteins encoded by the wss operon, which also occurs in other species, including pathogenic Achromobacter species. Although phenotypic mutant analysis of the wssFGHI genes has previously shown that they are responsible for acetylation of bacterial cellulose, their specific roles remain unknown and distinct from the recently identified cellulose phosphoethanolamine modification found in other species. Here we have purified the C-terminal soluble form of WssI from P. fluorescens and A. insuavis and demonstrated acetyl-esterase activity with chromogenic substrates. The kinetic parameters (kcat/KM values of 13 and 8.0 M-1∙ s-1, respectively) indicate that these enzymes are up to four times more catalytically efficient than the closest characterized homolog, AlgJ from the alginate synthase. Unlike AlgJ and its cognate alginate polymer, WssI also demonstrated acetyltransferase activity onto cellulose oligomers (e.g., cellotetraose to cellohexaose) with multiple acetyl-donor substrates (pNP-Ac, MU-Ac and acetyl-CoA). Finally, a high-throughput screen identified three low micromolar WssI inhibitors that may be useful for chemically interrogating cellulose acetylation and biofilm formation.
Collapse
Affiliation(s)
| | - Emily Rodriguez
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Shirley Constable
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Brian Lowrance
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Michael Fish
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Joel T Weadge
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada.
| |
Collapse
|
5
|
Karuppiah V, Natarajan S, Gangatharan M, Munirah FA, Noorah A, Thangavel K. Development of siderophore based rhizobacterial consortium for the mitigation of biotic and abiotic environmental stresses in tomatoes: An in vitro and in planta approach. J Appl Microbiol 2022; 133:3276-3287. [PMID: 35579173 DOI: 10.1111/jam.15625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/08/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022]
Abstract
AIM Tomato associated plant-growth promoting rhizosphere bacteria were screened for effective antagonistic activity against the fungal vascular wilt pathogens; tolerance to heavy metals; and enhancing the bioavailability of iron for tomato plants through in vitro and in vivo approaches. METHODS AND RESULTS Among the 121 rhizobacteria screened for siderophores, 25 isolates were observed to be siderophore producers and out of these, seven isolates chelate copper and iron thus exhibiting in vitro antagonism against the virulent strains of Fusarium oxysporum f. sp. lycopersici MTCC10270 (Fol), Fusarium equiseti MFol, and Sarocladium sp. SWL isolated from infected tomatoes. Pseudomonas stutzeri KRP8 was identified to be the most potent strain among the siderophore producers and its siderophores were chemically characterized by mass spectra as metal bound and metal-free forms. Upon bio-inoculation of fortified bacterial consortium (siderozote) into the rhizosphere of vermiculite pot cultured tomatoes supplied with varying concentrations of iron and copper ions, we observed in planta growth improvements, antagonism, enhancement of bioavailability of iron and heavy metal tolerance using Inductively Coupled Plasma-Optical Emission Spectrometry. CONCLUSION AND SIGNIFICANCE OF THE STUDY Our rhizobacterial consortium provides an opportunity for soil reclamation through an ecofriendly method for a heavy metal-free agricultural landscape.
Collapse
Affiliation(s)
- Vijay Karuppiah
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, TN, India
| | - Suganthy Natarajan
- Department of Nanoscience and Technology, Science Campus, Alagappa University, Karaikudi, TN, India
| | | | - F Aldayel Munirah
- Biological Sciences Department, College of Science, King Faisal University, Saudi Arabia
| | - Alsowayeh Noorah
- Department of Biology, College of Education (Majmaah), Majmaah University, Al-Majmaah, Saudi Arabia
| | - Kavitha Thangavel
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, TN, India
| |
Collapse
|
6
|
Diniz GFD, Figueiredo JEF, Lana UGP, Marins MS, Silva DD, Cota LV, Marriel IE, Oliveira-Paiva CA. Microorganisms from corn stigma with biocontrol potential of Fusarium verticillioides. BRAZ J BIOL 2022; 82:e262567. [DOI: 10.1590/1519-6984.262567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/01/2022] [Indexed: 12/23/2022] Open
Abstract
Abstract The mycotoxigenic fungus Fusarium verticillioides is the primary maize pathogen and causes the maize stalk and ear rot diseases with significant economic losses. Furthermore, the excessive use of fungicides to control F. verticillioides constitutes threats to the environment and human health. Thus, sustainable alternatives such as biological control are needed to minimize the hazards associated with the current method. Although much is known about the vulnerability of the maize silks as a gateway for several fungal pathogens invading the developing grains, studies on the chemical properties of silk extracts and their resident microbiota are scarce. This study isolated and characterized bacteria and fungi that colonize the maize stigma to assess new potential biocontrol agents. The samples were collected from maize fields in the Brazilian localities of Sete Lagoas-MG, Sidrolândia-MS, Sertaneja-PR, and Goiânia-GO. One hundred sixty-seven microorganisms were isolated, 46% endophytic and 54% epiphytic. First, the antagonist activity was evaluated by the agar disc diffusion method performed in triplicate, and 83% of the isolates showed antagonist activity against F. verticillioides. Then, the 42 most efficient isolates were identified based on the partial sequencing of the bacterial 16S rRNA gene and fungi ITS region. The bacteria belong to the genera Bacillus (57.1%), Burkholderia (23.8%), Achromobacter (7.1%), Pseudomonas (2.4%), and Serratia (2.4%), while the fungi are Penicillium (2.4%), Candida (2.4), and Aspergillus (2.4%). The results showed that microorganisms from maize stigma might represent new promising agents for F. verticillioides control.
Collapse
|
7
|
Antifungal activity of bacterial strains from maize silks against Fusarium verticillioides. Arch Microbiol 2021; 204:89. [DOI: 10.1007/s00203-021-02726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
|
8
|
Attia MS, El-Naggar HA, Abdel-Daim MM, El-Sayyad GS. The potential impact of Octopus cyanea extracts to improve eggplant resistance against Fusarium-wilt disease: in vivo and in vitro studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35854-35869. [PMID: 33677671 DOI: 10.1007/s11356-021-13222-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/25/2021] [Indexed: 05/17/2023]
Abstract
The novelty of the present research is conducting a new method in the systemic resistance of plant diseases by using distinct marine extracts. The ability of two octopus extracts to reduce the wilt disease caused by Fusarium oxysporum was observed. The applied methods are soaked roots (SR) and foliar shoots (FS). The antioxidant enzyme activities, percent disease index (PDI), and growth parameters were measured. In vitro antifungal potential of the octopus extracts against F. oxysporum was examined. The obtained result shows that SR extracts reduced PDI. Additionally, all the tested treatments promoted the growth and photosynthetic pigments of the infected plants. SR (in ethanolic extracts) was the most prominent inducer which offered a high advancement in the total soluble protein contents. Also, SR (in methanolic extracts) was the most suitable inducer which provided a very necessary development not only in the total phenol but also in the peroxidase (POD) and polyphenol oxidase (PPO) activities. GC-MS investigation of the octopus extracts exhibited that the compounds which possess antifungal activity were furoscrobiculin B and/or eugenol. They demonstrated a notable antifungal potential against F. oxysporum with a maximum activity of 38.5 and 12.7 mm ZOI after the treatment with the ethanolic and methanolic extract, respectively. FTIR results illustrated the functional group of the compound responsible for the antifungal activity. Additionally, an atomic absorption result reveals that there are traces of metals detected such as Pb, Ag, Cu, Zn, and Mg. The antifungal activity was decreased as the concentrations were reduced. Accordingly, the present extracts may be used as the vital agents in the agricultural field to restrain the plant pathogenic fungi, especially F. oxysporum from a proliferation.
Collapse
Affiliation(s)
- Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Hussein A El-Naggar
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Gharieb S El-Sayyad
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt.
| |
Collapse
|
9
|
Streptomyces strains modulate dynamics of soil bacterial communities and their efficacy in disease suppression caused by Phytophthora capsici. Sci Rep 2021; 11:9317. [PMID: 33927238 PMCID: PMC8085009 DOI: 10.1038/s41598-021-88495-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
The responses of rhizosphere bacterial communities of Streptomyces (SS14 and IT20 stains) treated-pepper plants following inoculation by Phytophthora capsici (PC) was investigated using Illumina MiSeq sequencing. Distinct modulation of the bacteriome composition was found for PC samples with the highest relative abundance (RA) of Chitinophaga (22 ± 0.03%). The RA of several bacterial operational taxonomic units (OTUs) was affected and caused changes in alpha and beta-diversity measures. In IT20, the RA of Cyanobacteria was enriched compared to SS14 (72%) and control samples (47%). Phylotypes belonging to Devosia, Promicromonospora, Kribbella, Microbacterium, Amylocolatopsis, and Pseudomonas genera in the rhizosphere were positively responding against the pathogen. Our findings show that the phosphate solubilizing strain IT20 has higher microbial community responders than the melanin-producing strain SS14. Also, positive interactions were identified by comparing bacterial community profiles between treatments that might allow designing synthetic bio-inoculants to solve agronomic problems in an eco-friendly way.
Collapse
|
10
|
Vijay K, Devi TS, Sree KK, Elgorban AM, Kumar P, Govarthanan M, Kavitha T. In vitro screening and in silico prediction of antifungal metabolites from rhizobacterium Achromobacter kerstersii JKP9. Arch Microbiol 2020; 202:2855-2864. [PMID: 32691101 DOI: 10.1007/s00203-020-01982-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/13/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
The main objective of this study was to identify the antifungal metabolites from Achromobacter kerstersii JKP9, a rhizosphere bacterium isolated from tomato cultivations, inhibiting the melanin biosynthetic pathways in vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici (Fol). To achieve this objective, all the rhizobacterial morphotypes were screened for plant-growth-promoting and antagonistic activities. Ethyl acetate extract of Achromobacter kerstersii JKP9 was purified in HPLC and predicted for antifungals in GC-MS equipped with Wiley library. After identification, molecular docking of useful ligands with modeled Short-chain Dehydrogenase/ Reductase (SDR) of Fol (Locus: FOXG_00472). Results were indicated that the potential strain Achromobacter kerstersii JKP9 exclusively secreted five pyrrole analogs notable for their antifungal role with no extracellular antifungal enzyme production as seen in other rhizobacterial isolates. In silico docking studies identified, Pyrrolo[1, 2-a]pyrazine-1,4-dione, hexahydro- as effective for SDR in Fol. From these results, we conclude that bacterial pyrroles can be used as an effective fungicide to control Fusarium wilt in tomatoes. In the future, these pyrrole derivatives can directly be employed as eco-friendly fungicides or may be used as antifungal supplements in agrochemical products for the sustainable production of tomatoes.
Collapse
Affiliation(s)
- Karuppiah Vijay
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - Thangarasu Suganya Devi
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - Karthikeyan Kirupa Sree
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ponnuchamy Kumar
- Department of Animal Health and Management, Science Campus, Alagappa University, Tamilnadu, Karaikudi, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 41566, Daegu, Republic of Korea
| | - Thangavel Kavitha
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India.
| |
Collapse
|
11
|
Inderbitzin P, Ward J, Barbella A, Solares N, Izyumin D, Burman P, Chellemi DO, Subbarao KV. Soil Microbiomes Associated with Verticillium Wilt-Suppressive Broccoli and Chitin Amendments are Enriched with Potential Biocontrol Agents. PHYTOPATHOLOGY 2018; 108:31-43. [PMID: 28876209 DOI: 10.1094/phyto-07-17-0242-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two naturally infested Verticillium wilt-conducive soils from the Salinas Valley of coastal California were amended with disease-suppressive broccoli residue or crab meal amendments, and changes to the soil prokaryote community were monitored using Illumina sequencing of a 16S ribosomal RNA gene library generated from 160 bulk soil samples. The experiment was run in a greenhouse, twice, with eggplant as the Verticillium wilt-susceptible host. Disease suppression, plant height, soil microsclerotia density, and soil chitinase activity were assessed at the conclusion of each experiment. In soil with high microsclerotia density, all amendments significantly reduced Verticillium wilt severity and microsclerotia density, and increased soil chitinase activity. Plant height was increased only in the broccoli-containing treatments. In total, 8,790 error-corrected sequence variants representing 1,917,893 different sequences were included in the analyses. The treatments had a significant impact on the soil microbiome community structure but measures of α diversity did not vary between treatments. Community structure correlated with disease score, plant height, microsclerotia density, and soil chitinase activity, suggesting that the prokaryote community may affect the disease-related response variables or vice versa. Similarly, the abundance of 107 sequence variants correlated with disease-related response variables, which included variants from genera with known antagonists of filamentous fungal plant pathogens, such as Pseudomonas and Streptomyces. Overall, genera with antifungal antagonists were more abundant in amended soils than unamended soils, and constituted up to 8.9% of all sequences in broccoli+crabmeal-amended soil. This study demonstrates that substrate-mediated shifts in soil prokaryote communities are associated with the transition of Verticillium wilt-conducive soils to Verticillium wilt-suppressive soils, and suggests that soils likely harbor numerous additional antagonists of fungal plant pathogens that contribute to the biological suppression of plant disease.
Collapse
Affiliation(s)
- Patrik Inderbitzin
- First and eighth authors: Department of Plant Pathology, and fifth and sixth authors: Department of Statistics, University of California, Davis; and second, third, fourth, and seventh authors: Driscoll's Strawberry Associates, Watsonville, CA
| | - Judson Ward
- First and eighth authors: Department of Plant Pathology, and fifth and sixth authors: Department of Statistics, University of California, Davis; and second, third, fourth, and seventh authors: Driscoll's Strawberry Associates, Watsonville, CA
| | - Alexandra Barbella
- First and eighth authors: Department of Plant Pathology, and fifth and sixth authors: Department of Statistics, University of California, Davis; and second, third, fourth, and seventh authors: Driscoll's Strawberry Associates, Watsonville, CA
| | - Natalie Solares
- First and eighth authors: Department of Plant Pathology, and fifth and sixth authors: Department of Statistics, University of California, Davis; and second, third, fourth, and seventh authors: Driscoll's Strawberry Associates, Watsonville, CA
| | - Dmitriy Izyumin
- First and eighth authors: Department of Plant Pathology, and fifth and sixth authors: Department of Statistics, University of California, Davis; and second, third, fourth, and seventh authors: Driscoll's Strawberry Associates, Watsonville, CA
| | - Prabir Burman
- First and eighth authors: Department of Plant Pathology, and fifth and sixth authors: Department of Statistics, University of California, Davis; and second, third, fourth, and seventh authors: Driscoll's Strawberry Associates, Watsonville, CA
| | - Dan O Chellemi
- First and eighth authors: Department of Plant Pathology, and fifth and sixth authors: Department of Statistics, University of California, Davis; and second, third, fourth, and seventh authors: Driscoll's Strawberry Associates, Watsonville, CA
| | - Krishna V Subbarao
- First and eighth authors: Department of Plant Pathology, and fifth and sixth authors: Department of Statistics, University of California, Davis; and second, third, fourth, and seventh authors: Driscoll's Strawberry Associates, Watsonville, CA
| |
Collapse
|
12
|
Diversity of indigenous endophytic bacteria associated with the roots of Chinese cabbage (Brassica campestris L.) cultivars and their antagonism towards pathogens. J Microbiol 2016; 54:353-63. [DOI: 10.1007/s12275-016-5641-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 11/30/2022]
|
13
|
Raza W, Ling N, Zhang R, Huang Q, Xu Y, Shen Q. Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies. Crit Rev Biotechnol 2016; 37:202-212. [DOI: 10.3109/07388551.2015.1130683] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Waseem Raza
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Ning Ling
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Ruifu Zhang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Qiwei Huang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Yangchun Xu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Qirong Shen
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| |
Collapse
|
14
|
Aeron A, Chauhan PS, Dubey RC, Maheshwari DK, Bajpai VK. Root nodule bacteria fromClitoria ternateaL. are putative invasive nonrhizobial endophytes. Can J Microbiol 2015; 61:131-42. [DOI: 10.1139/cjm-2014-0483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, bacteria (8 species and 5 genera) belonging to the classes Betaproteobacteria, Gammaproteobacteria, and Sphingobacteria were isolated from root nodules of the multipurpose legume Clitoria ternatea L. and identified on the basis of partial 16S rRNA sequencing. The root nodule bacteria were subjected to phenotypic clustering and diversity studies using biochemical kits, including Hi-Media Carbokit™, Enterobacteriaceae™ identification kit, ERIC–PCR, and 16S ARDRA. All the strains showed growth on Ashby’s N-free media over 7 generations, indicative of presumptive nitrogen fixation and further confirmed by amplification of the nifH gene. None of the strains showed the capability to renodulate the host plant, neither alone nor in combination with standard rhizobial strains, which was further confirmed by the absence of nodC bands in PCR assay. The results clearly indicate the common existence of nonrhizobial microflora inside the root nodules of legumes, which were thought to be colonized only by rhizobia and were responsible for N2fixation in leguminous crops. However, with the recent discovery of nodule endophytes from a variety of legumes, as also observed here, it can be assumed that symbiotic rhizobia are not all alone and that these invasive endophytes belonging to various bacterial genera are more than just opportunistic colonizers of specialized nodule niche.
Collapse
Affiliation(s)
- Abhinav Aeron
- Department of Botany and Microbiology, Faculty of Life Sciences, Gurukul Kangri Vishwavidhyalaya, Haridwar 249-404, Uttarakhand, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park 3, Greater Noida (NCR, Delhi) 201-306, Uttar Pradesh, India
| | - Puneet Singh Chauhan
- Division of Plant Microbe Interactions, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226-001, Uttar Pradesh, India
| | - Ramesh Chand Dubey
- Department of Botany and Microbiology, Faculty of Life Sciences, Gurukul Kangri Vishwavidhyalaya, Haridwar 249-404, Uttarakhand, India
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Faculty of Life Sciences, Gurukul Kangri Vishwavidhyalaya, Haridwar 249-404, Uttarakhand, India
| | - Vivek K. Bajpai
- Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea
| |
Collapse
|
15
|
Zhang M, Powell CA, Benyon LS, Zhou H, Duan Y. Deciphering the bacterial microbiome of citrus plants in response to 'Candidatus Liberibacter asiaticus'-infection and antibiotic treatments. PLoS One 2013; 8:e76331. [PMID: 24250784 PMCID: PMC3826729 DOI: 10.1371/journal.pone.0076331] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
The bacterial microbiomes of citrus plants were characterized in response to 'Candidatus Liberibacter asiaticus' (Las)-infection and treatments with ampicillin (Amp) and gentamicin (Gm) by Phylochip-based metagenomics. The results revealed that 7,407 of over 50,000 known Operational Taxonomic Units (OTUs) in 53 phyla were detected in citrus leaf midribs using the PhyloChip™ G3 array, of which five phyla were dominant, Proteobacteria (38.7%), Firmicutes (29.0%), Actinobacteria (16.1%), Bacteroidetes (6.2%) and Cyanobacteria (2.3%). The OTU62806, representing 'Candidatus Liberibacter', was present with a high titer in the plants graft-inoculated with Las-infected scions treated with Gm at 100 mg/L and in the water-treated control (CK1). However, the Las bacterium was not detected in the plants graft-inoculated with Las-infected scions treated with Amp at 1.0 g/L or in plants graft-inoculated with Las-free scions (CK2). The PhyloChip array demonstrated that more OTUs, at a higher abundance, were detected in the Gm-treated plants than in the other treatment and the controls. Pairwise comparisons indicated that 23 OTUs from the Achromobacter spp. and 12 OTUs from the Methylobacterium spp. were more abundant in CK2 and CK1, respectively. Ten abundant OTUs from the Stenotrophomonas spp. were detected only in the Amp-treatment. These results provide new insights into microbial communities that may be associated with the progression of citrus huanglongbing (HLB) and the potential effects of antibiotics on the disease and microbial ecology.
Collapse
Affiliation(s)
- Muqing Zhang
- Indian River Research and Education Center, IFAS-UF, Fort Pierce, Florida, United States of America
- USDA-ARS, US Horticultural Lab, Fort Pierce, Florida, United States of America
- State Key Lab for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Charles A. Powell
- Indian River Research and Education Center, IFAS-UF, Fort Pierce, Florida, United States of America
| | - Lesley S. Benyon
- USDA-ARS, US Horticultural Lab, Fort Pierce, Florida, United States of America
| | - Hui Zhou
- State Key Lab for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Yongping Duan
- USDA-ARS, US Horticultural Lab, Fort Pierce, Florida, United States of America
| |
Collapse
|
16
|
Cordero-Ramírez JD, López-Rivera R, Figueroa-Lopez AM, Mancera-López ME, Martínez-Álvarez JC, Apodaca-Sánchez MÁ, Maldonado-Mendoza IE. Native soil bacteria isolates in Mexico exhibit a promising antagonistic effect against Fusarium oxysporum f. sp. radicis-lycopersici. J Basic Microbiol 2013; 53:838-47. [PMID: 23417777 DOI: 10.1002/jobm.201200128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/03/2012] [Indexed: 11/09/2022]
Abstract
Sinaloa state accounts for 23% of Mexico's tomato production. One constraint on this important crop is the Fusarium crown and root rot, caused by Fusarium oxysporum f. sp. radicis-lycopersici, which has been reported to reduce crop yield by up to 50%. In this study, we set out to identify bacterial populations which could be used to control this disease through natural antagonism. Five tomato rhizospheric soil samples were collected, dried for 1-week, and homogenized. Sub-samples were used to prepare an aqueous solution used to isolate microorganisms in pure cultures. Organisms were purified and grown separately, and used to generate a collection of 705 bacterial isolates. Thirty-four percent from this bank (254 strains) was screened against Forl, finding 27 bacteria displaying in vitro Forl growth inhibition levels from 5% to 60%. These isolates belonged to the genus Bacillus and their 16Sr DNA sequences showed that they are closely related to seven species and they were putatively designated as: B. subtilis, B. cereus, B. amyloliquefaciens, B. licheniformis, B. thuringiensis, B. megaterium, and B. pumilus. One isolate belonged to the genus Acinetobacter. Two B. subtilis isolates (144 and 151) and one B. cereus isolate (171) showed the best antagonistic potential against FCRRT when evaluated on seedlings. Plate and activity assays indicate that these isolates include a diverse repertoire of functional antagonistic traits that might explain their ability to control FCRRT. Moreover, bacteria showed partial hemolytic activity, and future research will be directed at ensuring that their application will be not harmful for humans and effective against Forl in greenhouse or field conditions.
Collapse
Affiliation(s)
- Jesús Damián Cordero-Ramírez
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR-Sinaloa, Guasave, Sinaloa, Mexico
| | | | | | | | | | | | | |
Collapse
|
17
|
The role of a dark septate endophytic fungus, Veronaeopsis simplex Y34, in Fusarium disease suppression in Chinese cabbage. J Microbiol 2012; 50:618-24. [DOI: 10.1007/s12275-012-2105-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/08/2012] [Indexed: 11/26/2022]
|