1
|
Chen M, Wang X, Zhou X, Huang B, Zhao Y, Liu H, He Q. Abiotic stress-induced changes in Tetrastigma hemsleyanum: insights from secondary metabolite biosynthesis and enhancement of plant defense mechanisms. BMC PLANT BIOLOGY 2024; 24:1260. [PMID: 39725878 DOI: 10.1186/s12870-024-05975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Tetrastigma hemsleyanum, a traditional Chinese medicinal plant with anti-inflammatory, anti-cancer, and anti-tumor properties, faces increasing abiotic stress due to climate change, agricultural chemicals, and industrialization. This study investigated how three abiotic stress factors influence antioxidant enzyme activity, MDA levels, DPPH free radical scavenging capacity, chlorophyll, carotenoids, active compounds, and gene expression in different T. hemsleyanum strains. The comprehensive evaluation indicates that the ZJWZ strain holds potential as a preferred parental material for future resistance breeding. Furthermore, PAL gene expression was strongly positively correlated with flavonoid and phenol contents, highlighting its role in the stress response through the phenylpropanoid-flavonoid pathway. This study contributes to the standardization of the production and breeding of superior strains of T. hemsleyanum. It also lays the foundation for investigating how plants react to environmental stressors.
Collapse
Affiliation(s)
- Minmin Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Hangzhou, 572025, China
| | - Xiaoqun Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiawen Zhou
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Baiyu Huang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yujie Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Haiying Liu
- School of Agriculture, Yunnan University, Kunming, 650504, China
| | - Qiuling He
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Ali Q, Shabaan M, Ashraf S, Kamran M, Zulfiqar U, Ahmad M, Zahir ZA, Sarwar MJ, Iqbal R, Ali B, Ali MA, Elshikh MS, Arslan M. Comparative efficacy of different salt tolerant rhizobial inoculants in improving growth and productivity of Vigna radiata L. under salt stress. Sci Rep 2023; 13:17442. [PMID: 37838750 PMCID: PMC10576803 DOI: 10.1038/s41598-023-44433-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023] Open
Abstract
Worldwide, salinity severely affects agricultural production of crops such as mung bean in arid and semi-arid regions. In saline conditions, various species of Rhizobium can be used to enhance nodulation and induce salinity tolerance in maize. The present study conducted a pot experiment to determine the efficiency of three rhizobial isolates under different salinity conditions, such as 1.41, 4 and 6 dS m-1, on mung bean growth parameters, antioxidant status and yield. Results revealed that salt stress imparted adverse effects on the growth, antioxidants, yield and nodulation of mung bean. Under high salt stress conditions, fresh weights were reduced for roots (78.24%), shoots (64.52%), pods (58.26%) and height (32.33%) as compared to un-inoculated control plants. However, an increase in proline content (46.14%) was observed in high salt stressed plants. Three Rhizobium isolates (Mg1, Mg2, and Mg3), on the other hand, mitigated the negative effects of salt stress after inoculation. However, effects of Mg3 inoculation were prominent at 6 dS m-1 and it enhanced the plant height (45.10%), fresh weight of shoot (58.68%), root (63.64%), pods fresh weight (34.10%), pods number per plant (92.04%), and grain nitrogen concentration (21%) than un-inoculated control. Rhizobium strains Mg1, and Mg2 expressed splendid results at 1.41 and 4 dS m-1 salinity stress. The growth promotion effects might be due to improvement in mineral uptake and ionic balance that minimized the inhibitory effects caused by salinity stress. Thus, inoculating with these strains may boost mung bean growth and yield under salinity stress.
Collapse
Affiliation(s)
- Qasim Ali
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Shabaan
- Land Resources Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Sana Ashraf
- College of Earth and Environmental Sciences, Quaid-e-Azam Campus, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Kamran
- Pakistan Council for Science and Technology, Ministry of Science and Technology, Islamabad, 44000, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Maqshoof Ahmad
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Junaid Sarwar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Muhammad Arslan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| |
Collapse
|
3
|
Niu Z, Liu L, Yue J, Wu J, Wang W, Pu Y, Ma L, Fang Y, Sun W. Genome-Wide Identification of GSTs Gene Family and Functional Analysis of BraGSTF2 of Winter Rapeseed ( Brassica rapa L.) under Cold Stress. Genes (Basel) 2023; 14:1689. [PMID: 37761829 PMCID: PMC10531308 DOI: 10.3390/genes14091689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The largest gene families in plants were found to be Glutathione transferases (GSTs), which played significant roles in regulating plant growth, development, and stress response. Within the GSTs gene family, members were found to play a crucial role in the low-temperature response process of plants. A comprehensive study identified a total of 70 BraGSTs genes. Cluster analysis results demonstrated that the BraGSTs in Brassica rapa (B. rapa) could be categorized into eight sub-families and were unevenly distributed across ten chromosomes. The 39 BraGSTs genes were found to be organized into 15 tandem gene clusters, with the promoters containing multiple cis-elements associated with low-temperature response. Cold stress was observed to stimulate the expression of 15 genes, with the BraGSTF2 gene exhibiting the highest level of expression, suggesting its significant involvement in winter B. rapa's response to low-temperature stress. Subcellular localization analysis of the BraGSTF2 protein indicated its potential expression in both the cell membrane and nucleus. The analysis of stress resistance in BraGSTF2 transgenic Arabidopsis thaliana lines demonstrated that the over-expression of this gene resulted in significantly elevated levels of SOD, POD activity, and SP content compared to the wild type following exposure to low temperatures. These levels reached their peak after 24 h of treatment. Conversely, the MDA content was lower in the transgenic plants compared to the wild-type (WT) Arabidopsis (Arabidopsis thaliana L.). Additionally, the survival rate of BraGSTF2 transgenic Arabidopsis was higher than that of the WT Arabidopsis thaliana, suggesting that the BraGSTF2 gene may play a crucial role in enhancing the cold stress tolerance of winter B. rapa. This study lays a foundation for further research on the role of the BraGSTs gene in the molecular regulation of cold resistance in winter B. rapa.
Collapse
Affiliation(s)
- Zaoxia Niu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.N.); (J.W.); (Y.P.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Lijun Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.N.); (J.W.); (Y.P.)
| | - Jinli Yue
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.N.); (J.W.); (Y.P.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Junyan Wu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.N.); (J.W.); (Y.P.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wangtian Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.N.); (J.W.); (Y.P.)
| | - Yuanyuan Pu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.N.); (J.W.); (Y.P.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Ma
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.N.); (J.W.); (Y.P.)
| | - Yan Fang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.N.); (J.W.); (Y.P.)
| | - Wancang Sun
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.N.); (J.W.); (Y.P.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Xu B, Cao L, Zhang Z, Li X, Zhao X, Wang X, Wang Y, Wu B, Zhou W, Lin C, Gao Y, Rong L. Physiological effects of combined NaCl and NaHCO 3 stress on the seedlings of two maple species. FRONTIERS IN PLANT SCIENCE 2023; 14:1209999. [PMID: 37496858 PMCID: PMC10367004 DOI: 10.3389/fpls.2023.1209999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Salt stress impacts growth and physiological processes in plants, and some plants exposed to salt stress will produce physiological mechanisms to adapt to the new environment. However, the effects of combined NaCl and NaHCO3 stress on the seedlings of Acer species are understudied. In this study, we designed an experiment to measure physiological characteristics by establishing a range of NaCl and NaHCO3 concentrations (0, 25, 50, 75, and 100 mmol L-1) to estimate the compound salt tolerance of Acer ginnala and Acer palmatum. When the concentrations of NaCl and NaHCO3 were 25 mmol L-1, the leaf water content, relative conductivity, malondialdehyde (MDA) content, proline content, soluble sugar content, and chlorophyll did not change (p > 0.05) in two maple seedlings. At concentrations greater than 50 mmol L-1, the relative conductivity and MDA content increased, proline and soluble sugars accumulated, and the potential activity of PS II (Fv/Fo), potential photochemical efficiency of PS II (Fv/Fm), PS II actual photochemical efficiency (Yield), and photosynthetic electron transfer efficiency (ETR) decreased (p < 0.05). The superoxide dismutase (SOD) and catalase (CAT) activities showed the same trend of first increasing and then decreasing (p < 0.05). The peroxidase (POD) activity increased only when concentrations of NaCl and NaHCO3 were 100 mmol L-1, while there was no statistical difference between the other treatments and the control. Therefore, the two maple seedlings adjusted their osmotic balance and alleviated oxidative stress by accumulating proline, soluble sugars and increasing CAT and SOD activities. Further analysis showed that both species are salt tolerant and the salt tolerance of Acer ginnala is better than that of Acer palmatum.
Collapse
Affiliation(s)
- Bo Xu
- College of Agriculture, Yanbian University, Yanji, China
| | - Lina Cao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun, China
| | - Zhenxing Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Xinyu Li
- College of Agriculture, Yanbian University, Yanji, China
| | - Xiangyu Zhao
- College of Agriculture, Yanbian University, Yanji, China
| | - Xinyue Wang
- College of Agriculture, Yanbian University, Yanji, China
| | - Yining Wang
- College of Agriculture, Yanbian University, Yanji, China
| | - Bingchen Wu
- College of Agriculture, Yanbian University, Yanji, China
| | - Weihua Zhou
- College of Agriculture, Yanbian University, Yanji, China
| | - Chenlu Lin
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Yufu Gao
- College of Agriculture, Yanbian University, Yanji, China
| | - Liping Rong
- College of Agriculture, Yanbian University, Yanji, China
| |
Collapse
|
5
|
Xu N, Chen B, Cheng Y, Su Y, Song M, Guo R, Wang M, Deng K, Lan T, Bao S, Wang G, Guo Z, Yu L. Integration of GWAS and RNA-Seq Analysis to Identify SNPs and Candidate Genes Associated with Alkali Stress Tolerance at the Germination Stage in Mung Bean. Genes (Basel) 2023; 14:1294. [PMID: 37372474 DOI: 10.3390/genes14061294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Soil salt-alkalization seriously impacts crop growth and productivity worldwide. Breeding and applying tolerant varieties is the most economical and effective way to address soil alkalization. However, genetic resources for breeders to improve alkali tolerance are limited in mung bean. Here, a genome-wide association study (GWAS) was performed to detect alkali-tolerant genetic loci and candidate genes in 277 mung bean accessions during germination. Using the relative values of two germination traits, 19 QTLs containing 32 SNPs significantly associated with alkali tolerance on nine chromosomes were identified, and they explained 3.6 to 14.6% of the phenotypic variance. Moreover, 691 candidate genes were mined within the LD intervals containing significant trait-associated SNPs. Transcriptome sequencing of alkali-tolerant accession 132-346 under alkali and control conditions after 24 h of treatment was conducted, and 2565 DEGs were identified. An integrated analysis of the GWAS and DEGs revealed six hub genes involved in alkali tolerance responses. Moreover, the expression of hub genes was further validated by qRT-PCR. These findings improve our understanding of the molecular mechanism of alkali stress tolerance and provide potential resources (SNPs and genes) for the genetic improvement of alkali tolerance in mung bean.
Collapse
Affiliation(s)
- Ning Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Bingru Chen
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yuxin Cheng
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yufei Su
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Mengyuan Song
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Rongqiu Guo
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Minghai Wang
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Kunpeng Deng
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Tianjiao Lan
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Shuying Bao
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Guifang Wang
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Zhongxiao Guo
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Lihe Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
6
|
Srivastava R, Kobayashi Y, Koyama H, Sahoo L. Cowpea NAC1/NAC2 transcription factors improve growth and tolerance to drought and heat in transgenic cowpea through combined activation of photosynthetic and antioxidant mechanisms. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:25-44. [PMID: 36107155 DOI: 10.1111/jipb.13365] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
NAC (NAM/ATAF1/2/CUC2) transcription factors are central switches of growth and stress responses in plants. However, unpredictable interspecies conservation of function and regulatory targets makes the well-studied NAC orthologs inapt for pulse engineering. The knowledge of suitable NAC candidates in hardy pulses like cowpea (Vigna unguiculata (L.) Walp.) is still in infancy, hence warrants immediate biotechnological intervention. Here, we showed that overexpression of two native NAC genes (VuNAC1 and VuNAC2) promoted germinative, vegetative, and reproductive growth and conferred multiple abiotic stress tolerance in a commercial cowpea variety. The transgenic lines displayed increased leaf area, thicker stem, nodule-rich denser root system, early flowering, higher pod production (∼3.2-fold and ∼2.1-fold), and greater seed weight (10.3% and 6.0%). In contrast, transient suppression of VuNAC1/2 caused severe growth retardation and flower inhibition. The overexpressor lines showed remarkable tolerance to major yield-declining terminal stresses, such as drought, salinity, heat, and cold, and recovered growth and seed production by boosting photosynthetic activity, water use efficiency, membrane integrity, Na+ /K+ homeostasis, and antioxidant activity. The comparative transcriptome study indicated consolidated activation of genes involved in chloroplast development, photosynthetic complexes, cell division and expansion, cell wall biogenesis, nutrient uptake and metabolism, stress response, abscisic acid, and auxin signaling. Unlike their orthologs, VuNAC1/2 direct synergistic transcriptional tuning of stress and developmental signaling to avoid unwanted trade-offs. Their overexpression governs the favorable interplay of photosynthesis and reactive oxygen species regulation to improve stress recovery, nutritional sufficiency, biomass, and production. This unconventional balance of strong stress tolerance and agronomic quality is useful for translational crop research and molecular breeding of pulses.
Collapse
Affiliation(s)
- Richa Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu, 501-1193,, Japan
| | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu, 501-1193,, Japan
| | - Lingaraj Sahoo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
7
|
Hajihashemi S, Skalicky M, Brestic M, Pavla V. Effect of sodium nitroprusside on physiological and anatomical features of salt-stressed Raphanus sativus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:160-170. [PMID: 34800820 DOI: 10.1016/j.plaphy.2021.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Sodium nitroprusside (SNP), which produces nitric oxide (NO) has the well-documented potential to alleviate the adverse effects of various abiotic stressors such as salinity. The present study aimed at investigating how the application of SNP can ameliorate the adverse effects of salt stress and boost tolerance in Raphanus sativus. Salt stress induced by application of 100 or 200 mM NaCl significantly decreased photosynthetic pigments and chlorophyll fluorescence, followed by a significant reduction in carbohydrate content. SNP treatment increased salt-tolerance in plants by inhibiting the adverse effect of salinity on the photosynthetic apparatus and the accumulation of sugars. Salt stress was accompanied by a reduction in total antioxidant power (FRAP), accumulation of damaging levels of H2O2, lipid peroxidation, and reduction in protein, while SNP enhanced FRAP, reduced H2O2 and lipid peroxidation, and restored protein abundance. SNP treatment also increased hypocotyl growth of salt-stressed plants, accompanied by improvement in anatomical structure. Cross sections of the hypocotyl showed increased diameter of the central cylinder and thickness of the casparian strip in the SNP-treated plants under stress conditions. Indeed, the observed improvement in the growth of hypocotyl and leaves of salt-stressed radish plants treated with SNP, in parallel with improved physiology and anatomical features, suggested that NO can regulate diverse mechanisms to effectively increase salt tolerance.
Collapse
Affiliation(s)
- Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan, 47189-6361, Iran.
| | - Milan Skalicky
- Department of Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, 16500, Prague, Czech Republic
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, 16500, Prague, Czech Republic; Department of Botany and Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976, Nitra, Slovakia
| | - Vachova Pavla
- Department of Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, 16500, Prague, Czech Republic
| |
Collapse
|
8
|
Mishra P, Mishra J, Arora NK. Plant growth promoting bacteria for combating salinity stress in plants - Recent developments and prospects: A review. Microbiol Res 2021; 252:126861. [PMID: 34521049 DOI: 10.1016/j.micres.2021.126861] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/16/2023]
Abstract
Soil salinity has emerged as a great threat to the agricultural ecosystems throughout the globe. Many continents of the globe are affected by salinity and crop productivity is severely affected. Anthropogenic activities leading to the degradation of agricultural land have also accelerated the rate of salinization in arid and semi-arid regions. Several approaches are being evaluated for remediating saline soil and restoring their productivity. Amongst these, utilization of plant growth promoting bacteria (PGPB) has been marked as a promising tool. This greener approach is suitable for simultaneous reclamation of saline soil and improving the productivity. Salt-tolerant PGPB utilize numerous mechanisms that affect physiological, biochemical, and molecular responses in plants to cope with salt stress. These mechanisms include osmotic adjustment by ion homeostasis and osmolyte accumulation, protection from free radicals by the formation of free radicals scavenging enzymes, oxidative stress responses and maintenance of growth parameters by the synthesis of phytohormones and other metabolites. As salt-tolerant PGPB elicit better plant survival under salinity, they are the potential candidates for enhancing agricultural productivity. The present review focuses on the various mechanisms used by PGPB to improve plant health under salinity. Recent developments and prospects to facilitate better understanding on the functioning of PGPB for ameliorating salt stress in plants are emphasized.
Collapse
Affiliation(s)
- Priya Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| | - Jitendra Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| | - Naveen Kumar Arora
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| |
Collapse
|
9
|
Singh M, Singh K, Sethi AS. Contribution of green manufacturing for realizing business performance in Indian small and medium scale organizations (SME’s). JOURNAL OF SCIENCE AND TECHNOLOGY POLICY MANAGEMENT 2021. [DOI: 10.1108/jstpm-11-2020-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The current manuscript is focused on evaluating the capabilities of green practices that affect various business performance (BP) parameters of small and medium scale Indian manufacturing enterprises (SME’s). This study aims to obtain multiple significant factors that influence the implementation of green practices.
Design/methodology/approach
The manuscript focuses on statistical testing of responses obtained from 168 Indian SMEs to determine the relationship between input parameters and BP parameters. This paper starts with deploying tests such as Cronbach alpha and inter-item covariance test to obtain confidence in data collected, followed by various statistical tests such as Pearson correlation, multiple regression, canonical correlation to extract various significant factors the study. Further Games-Howell post hoc test is deployed to evaluate the significant improvements in BP gained over a reasonable duration of time. Finally, a discriminant validity test is used to find out the success or failure of the organizations that participated in the survey.
Findings
This research contributes to the holistic effect of green manufacturing (GM) toward gaining improvements in terms of different BP parameters taken for the study. It has been found that various input factors such as customer attributes, adoption of new technology, social pressure and government pressure are the main parameters for GM implementation. Further, it is observed that those at the maturity phase of GM implementation are reaping higher benefits than the organizations at the transition and stability phase.
Originality/value
The current study has been accomplished in Indian SME manufacturing organizations to investigate the effects of GM implementation in the organization. Although research findings imply the effective use of green practices within the organization to reap BP parameters and improve the market’s competitive image, the study cannot be generalized and can be used as an insight for both academicians and end-users in understanding the overall achievements of GM.
Collapse
|
10
|
İbrahimova U, Kumari P, Yadav S, Rastogi A, Antala M, Suleymanova Z, Zivcak M, Tahjib-Ul-Arif M, Hussain S, Abdelhamid M, Hajihashemi S, Yang X, Brestic M. Progress in understanding salt stress response in plants using biotechnological tools. J Biotechnol 2021; 329:180-191. [PMID: 33610656 DOI: 10.1016/j.jbiotec.2021.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/06/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Salinization is a worldwide environmental problem, which is negatively impacting crop yield and thus posing a threat to the world's food security. Considering the rising threat of salinity, it is need of time, to understand the salt tolerant mechanism in plants and find avenues for the development of salinity resistant plants. Several plants tolerate salinity in a different manner, thereby halophytes and glycophytes evolved altered mechanisms to counter the stress. Therefore, in this review article, physiological, metabolic, and molecular aspects of the plant adaptation to salt stress have been discussed. The conventional breeding techniques for developing salt tolerant plants has not been much successful, due to its multigenic trait. The inflow of data from plant sequencing projects and annotation of genes led to the identification of many putative genes having a role in salt stress. The bioinformatics tools provided preliminary information and were helpful for making salt stress-specific databases. The microRNA identification and characterization led to unraveling the finer intricacies of the network. The transgenic approach finally paved a way for overexpressing some important genes viz. DREB, MYB, COMT, SOS, PKE, NHX, etc. conferred salt stress tolerance. In this review, we tried to show the effect of salinity on plants, considering ion homeostasis, antioxidant defense response, proteins involved, possible utilization of transgenic plants, and bioinformatics for coping with this stress factor. An overview of previous studies related to salt stress is presented in order to assist researchers in providing a potential solution for this increasing environmental threat.
Collapse
Affiliation(s)
- Ulkar İbrahimova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ 1073, Azerbaijan
| | - Pragati Kumari
- Department of Life Science, Singhania University, Jhunjhunu, Rajasthan 333515, India; Scientist Hostel-S-02, Chauras campus, Srinagar Garhwal, Uttarakhand 246174, India
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland.
| | - Michal Antala
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland; Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Zarifa Suleymanova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ 1073, Azerbaijan
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry & Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Sajad Hussain
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | | | - Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan, 47189-63616, Iran
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic.
| |
Collapse
|
11
|
Hamani AKM, Chen J, Soothar MK, Wang G, Shen X, Gao Y, Qiu R. Application of Exogenous Protectants Mitigates Salt-Induced Na + Toxicity and Sustains Cotton ( Gossypium hirsutum L.) Seedling Growth: Comparison of Glycine Betaine and Salicylic Acid. PLANTS (BASEL, SWITZERLAND) 2021; 10:380. [PMID: 33671193 PMCID: PMC7923183 DOI: 10.3390/plants10020380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
Soil salinization adversely affects agricultural productivity. Mitigating the adverse effects of salinity represents a current major challenge for agricultural researchers worldwide. The effects of exogenously applied glycine betaine (GB) and salicylic acid (SA) on mitigating sodium toxicity and improving the growth of cotton seedlings subjected to salt stress remain unclear. The treatments in a phytotron included a control (CK, exogenously untreated, non-saline), two NaCl conditions (0 and 150 mM), four exogenous GB concentrations (0, 2.5, 5.0, and 7.5 mM), and four exogenous SA concentrations (0, 1.0, 1.5, and 2.0 mM). The shoot and roots exposed to 150 mM NaCl without supplementation had significantly higher Na+ and reduced K+, Ca2+, and Mg2+ contents, along with lowered biomass, compared with those of CK. Under NaCl stress, exogenous GB and SA at all concentrations substantially inversed these trends by improving ion uptake regulation and biomass accumulation compared with NaCl stress alone. Supplementation with 5.0 mM GB and with 1.0 mM SA under NaCl stress were the most effective conditions for mitigating Na+ toxicity and enhancing biomass accumulation. NaCl stress had a negative effect on plant growth parameters, including plant height, leaf area, leaf water potential, and total nitrogen (N) in the shoot and roots, which were improved by supplementation with 5.0 mM GB or 1.0 mM SA. Supplementation with 5.0 mM exogenous GB was more effective in controlling the percentage loss of conductivity (PLC) under NaCl stress.
Collapse
Affiliation(s)
- Abdoul Kader Mounkaila Hamani
- Farmland Irrigation Research Institute, Chinese Academy of Agriculture Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China; (A.K.M.H.); (J.C.); (M.K.S.); (G.W.); (X.S.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinsai Chen
- Farmland Irrigation Research Institute, Chinese Academy of Agriculture Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China; (A.K.M.H.); (J.C.); (M.K.S.); (G.W.); (X.S.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mukesh Kumar Soothar
- Farmland Irrigation Research Institute, Chinese Academy of Agriculture Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China; (A.K.M.H.); (J.C.); (M.K.S.); (G.W.); (X.S.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangshuai Wang
- Farmland Irrigation Research Institute, Chinese Academy of Agriculture Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China; (A.K.M.H.); (J.C.); (M.K.S.); (G.W.); (X.S.)
| | - Xiaojun Shen
- Farmland Irrigation Research Institute, Chinese Academy of Agriculture Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China; (A.K.M.H.); (J.C.); (M.K.S.); (G.W.); (X.S.)
| | - Yang Gao
- Farmland Irrigation Research Institute, Chinese Academy of Agriculture Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China; (A.K.M.H.); (J.C.); (M.K.S.); (G.W.); (X.S.)
| | - Ranjian Qiu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
12
|
Lin L, Wu J, Jiang M, Wang Y. Plant Mitogen-Activated Protein Kinase Cascades in Environmental Stresses. Int J Mol Sci 2021; 22:ijms22041543. [PMID: 33546499 PMCID: PMC7913722 DOI: 10.3390/ijms22041543] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Due to global warming and population growth, plants need to rescue themselves, especially in unfavorable environments, to fulfill food requirements because they are sessile organisms. Stress signal sensing is a crucial step that determines the appropriate response which, ultimately, determines the survival of plants. As important signaling modules in eukaryotes, plant mitogen-activated protein kinase (MAPK) cascades play a key role in regulating responses to the following four major environmental stresses: high salinity, drought, extreme temperature and insect and pathogen infections. MAPK cascades are involved in responses to these environmental stresses by regulating the expression of related genes, plant hormone production and crosstalk with other environmental stresses. In this review, we describe recent major studies investigating MAPK-mediated environmental stress responses. We also highlight the diverse function of MAPK cascades in environmental stress. These findings help us understand the regulatory network of MAPKs under environmental stress and provide another strategy to improve stress resistance in crops to ensure food security.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
| | - Jian Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225000, China
- Correspondence: (J.W.); (Y.W.)
| | - Mingyi Jiang
- College of Life Sciences and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China;
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225000, China
- Correspondence: (J.W.); (Y.W.)
| |
Collapse
|
13
|
Bromham L, Hua X, Cardillo M. Macroevolutionary and macroecological approaches to understanding the evolution of stress tolerance in plants. PLANT, CELL & ENVIRONMENT 2020; 43:2832-2846. [PMID: 32705700 DOI: 10.1111/pce.13857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/26/2020] [Accepted: 07/05/2020] [Indexed: 05/24/2023]
Abstract
Environmental stress response in plants has been studied using a wide range of approaches, from lab-based investigation of biochemistry and genetics, to glasshouse studies of physiology and growth rates, to field-based trials and ecological surveys. It is also possible to investigate the evolution of environmental stress responses using macroevolutionary and macroecological analyses, analysing data from many different species, providing a new perspective on the way that environmental stress shapes the evolution and distribution of biodiversity. "Macroevoeco" approaches can produce intriguing results and new ways of looking at old problems. In this review, we focus on studies using phylogenetic analysis to illuminate macroevolutionary patterns in the evolution of environmental stress tolerance in plants. We follow a particular thread from our own research-evolution of salt tolerance-as a case study that illustrates a macroevolutionary way of thinking that opens up a range of broader questions on the evolution of environmental stress tolerances. We consider some potential future applications of macroevolutionary and macroecological analyses to understanding how diverse groups of plants evolve in response to environmental stress, which may allow better prediction of current stress tolerance and a way of predicting the capacity of species to adapt to changing environmental stresses over time.
Collapse
Affiliation(s)
- Lindell Bromham
- Macroevolution & Macroecology, Research School of Biology, Australian National University, Canberra, Australia
| | - Xia Hua
- Macroevolution & Macroecology, Research School of Biology, Australian National University, Canberra, Australia
- Mathematical Sciences Institute, Australian National University, Canberra, Australia
| | - Marcel Cardillo
- Macroevolution & Macroecology, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
14
|
Sarker U, Oba S. The Response of Salinity Stress-Induced A. tricolor to Growth, Anatomy, Physiology, Non-Enzymatic and Enzymatic Antioxidants. FRONTIERS IN PLANT SCIENCE 2020; 11:559876. [PMID: 33178233 PMCID: PMC7596248 DOI: 10.3389/fpls.2020.559876] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/17/2020] [Indexed: 05/20/2023]
Abstract
An investigation was carried out to elucidate growth, anatomical, physiological, and major ROS detoxification pathways involved in the tolerance of A. tricolor under salinity stress. Both VA14 and VA3 varieties exhibited the reduction in relative water content (RWC), photosynthetic pigments, growth, increased electrolyte leakage (EL), and leaf anatomy adaptation under salinity stress, whereas VA14 was well adapted and performed better compared to VA3. Higher ROS accumulation was demonstrated in the sensitive variety (VA3) in comparison to the tolerant variety (VA14). Salinity stress changed the cellular antioxidant pool by increasing total carotenoids, ascorbate, proline, total polyphenol content (TPC), total flavonoid content (TFC), and total antioxidant capacity (TAC) in both varieties. Although a higher increment was demonstrated in the tolerant variety, the proline increment was much more pronounced in the sensitive variety. Non-enzymatic antioxidant, ascorbate, carotenoids, TPC, TFC, TAC, and antioxidant enzymes SOD and APX were noted to be a major H2O2 detoxifier in the tolerant A. tricolor variety, where there is a comparatively lower H2O2 load. It was complemented by GPOX and CAT activity at a comparatively higher H2O2 load (in the sensitive variety). SOD contributed to the dismutation of superoxide radical (SOR) both in the tolerant and sensitive varieties; however, it greatly contributed to the dismutation of SOR in the tolerant variety. The increase in SOD, ascorbate, and APX makes it predominantly evident that SOD and the AsA-GSH cycle had greatly contributed to quench reactive oxygen species (ROS) of the tolerant variety of A. tricolor.
Collapse
Affiliation(s)
- Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Shinya Oba
- Laboratory of Field Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
15
|
Orozco-Mosqueda MDC, Glick BR, Santoyo G. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiol Res 2020; 235:126439. [PMID: 32097862 DOI: 10.1016/j.micres.2020.126439] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 11/27/2022]
Abstract
Salinity in agricultural soil is a major problem around the world, with negative consequences for the growth and production of a wide range of crops. To counteract these harmful effects, plants sometimes have bacterial partners that contain the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which acts by degrading ACC (the precursor of ethylene in all higher plants). The enzymatic activity of ACC deaminase results in the production of α-ketobutyrate and ammonia, which, by lowering ACC levels, prevents excessive increases in the synthesis of ethylene under various stress conditions and is one of the most efficient mechanisms to induce plant tolerance to salt stress. In the present review, recent works on the role of ACC deaminase are discussed alongside its importance in promoting plant growth under conditions of salt stress in endophytic and rhizospheric bacteria, with some emphasis on Bacillus species. In addition, the toxic effects of soil salinity on plants and microbial biodiversity are analysed. Recent findings on the synergetic functioning of ACC deaminase and other bacterial mechanisms of salt stress tolerance, such as trehalose accumulation, are also summarized. Finally, we discuss the various advantages of ACC deaminase-producing bacilli as bioinoculants to address the problem of salinity in agricultural soils.
Collapse
Affiliation(s)
- Ma Del Carmen Orozco-Mosqueda
- Facultad de Agrobiología "Presidente Juárez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Paseo Lázaro Cárdenas s/n Esq, Berlín, Col. Viveros, 60190, Uruapan, Michoacán, Mexico
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
16
|
Zhao L, Zhang F, Liu B, Yang S, Xiong X, Hassani D, Zhang Y. CmRAV1 shows differential expression in two melon (Cucumis melo L.) cultivars and enhances salt tolerance in transgenic Arabidopsis plants. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1123-1133. [PMID: 31620769 DOI: 10.1093/abbs/gmz107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 11/15/2022] Open
Abstract
The growth and development of melon (Cucumis melo L.) are severely affected by soil salinization in many areas of the world, but the understanding of the molecular mechanisms underlying salt tolerance in melon remains limited. In this study, a new RAV (related to ABI3/VP1) gene, CmRAV1, was identified in melon. Protein structure homology analysis revealed that CmRAV1 contains an AP2 domain and a B3 domain, and subcellular localization assay revealed that CmRAV1 is localized in the nucleus. The transcript level of CmRAV1 was closely correlated with NaCl treatment, and the expression pattern of CmRAV1 differed between two cultivars (salt-tolerant and salt-sensitive cultivars) under NaCl treatment. In addition, yeasts transformed with CmRAV1 showed notably improved growth on medium containing 200 mM NaCl compared with wild-type ones. The overexpression of CmRAV1 in transgenic Arabidopsis thaliana resulted in enhanced salt tolerance at the seed germination and seedling growth stages. This study demonstrated that the expression of CmRAV1 was associated with saline stress and can potentially be utilized to improve plant salt tolerance.
Collapse
Affiliation(s)
- Lina Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Furong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Senlin Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Xiong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Danial Hassani
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yidong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| |
Collapse
|
17
|
Long-Tang H, Li-Na Z, Li-Wei G, Anne-Aliénor V, Hervé S, Yi-Dong Z. Constitutive expression of CmSKOR, an outward K + channel gene from melon, in Arabidopsis thaliana involved in saline tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:492-502. [PMID: 30080639 DOI: 10.1016/j.plantsci.2018.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 05/07/2023]
Abstract
Shaker-like K+ outward rectifying channel (SKOR) is involved in mediating long-distance K+ transport from roots to shoots. In this study, a Shaker-like outward K+ channel gene CmSKOR (GenBank accession number MF447462) was isolated from melon (Cucumis melo L.). Phylogenetic analysis showed that CmSKOR belongs to the SKOR-subfamily in the Shaker-like K+ channel family. Electrophysiological experiments indicated that CmSKOR was a K+-permeable channel with low affinity. Expressed in Xenopus oocytes, CmSKOR displayed classical Shaker-like outwardly rectifying K+ currents. Confocal imaging of a CmSKOR - yellow fluorescent fusion protein (YFP) in transgenic Nicotiana tabacum leaves indicated that CmSKOR was located in the plasma membrane. Transcript analysis showed CmSKOR predominantly expressed in melon roots and with lower abundance in stem and leaves. In addition, both external K+ and NaCl treatment could up-regulate the expression of CmSKOR in melon and enhance the K+ content in shoot. Constitutive overexpressed CmSKOR in Arabidopsis thaliana, the transgenic plants showed changes in root length in MS plates, displayed higher maximum photochemical efficiency of PSII (Fv/Fm), higher fresh and dry weight, and accumulation of K+ in shoot, together with the changes of transcript amount of CmSKOR with NaCl treatments in mixture substrate. In conclusion, it was proposed that CmSKOR may play the role on distributing K+ to the shoot in melon and its constitutive expression in Arabidopsis improved saline tolerance by maintaining K+ homeostasis in the plant.
Collapse
Affiliation(s)
- Huang Long-Tang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai,, 200240 China
| | - Zhao Li-Na
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai,, 200240 China
| | - Gao Li-Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai,, 200240 China
| | - Véry Anne-Aliénor
- Biochimie et Physiologie Moléculaires des Plantes, UMR 5004 CNRS/ UMR 386 INRA/SupAgro-M /UM, Place Viala, 34060 Montpellier Cedex 2, France
| | - Sentenac Hervé
- Biochimie et Physiologie Moléculaires des Plantes, UMR 5004 CNRS/ UMR 386 INRA/SupAgro-M /UM, Place Viala, 34060 Montpellier Cedex 2, France
| | - Zhang Yi-Dong
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai,, 200240 China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China.
| |
Collapse
|
18
|
Zhou X, Zhang N, Yang J, Tang X, Wen Y, Si H. Functional analysis of StDWF4 gene in response to salt stress in potato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:63-73. [PMID: 29427889 DOI: 10.1016/j.plaphy.2018.01.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 05/20/2023]
Abstract
The DWARF4 (DWF4) gene encodes a C-22 hydroxylase which is pivotal for brassinosteroids (BRs) biosynthesis. In this research, aimed to understand the molecular mechanism of DWF4 on regulation of potatoes tolerance to salt stress, DWF4 was cloned from potato, named as StDWF4. Its 1476 bp open reading frame encodes a protein of 491 amino acids. The StDWF4-overexpressing (OE) and interference-expressing (RNAi) transgenic potato plants were acquired using Agrobacterium-mediated transformation, respectively. Tissue specific analysis using Quantitative real-time polymerase chain reaction (qRT-PCR) demonstrated that the StDWF4 gene expressed in the leaves, stems and roots of the transgenic and un-transgenic (NT) plants, with specially increased (StDWF4-OE)/reduced (StDWF4-RNAi) expression in the roots. The content of malondialdehyde (MDA) in StDWF4-OE potato plants was lower than that of NT, and proline content was higher than that of NT. MDA and proline content in StDWF4-OE and NT under salt-stress was significantly higher than that of the control and was increased at different sampling times. The content of soluble protein, soluble sugar and the activities of superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX) was higher in the StDWF4-OE plantlets at varied salt treatment time than in the NT potatoes. Reduction of H2O2 content in the StDWF4-OE plants was observed. All above plant physiology indicators in the StDWF4-RNAi potatoes showed opposite variation trends. The results proved that the overexpressing of StDWF4 in potato plantlets can enhance the salt resistance by alleviating the negative effects of salt-stress. However, its interference expression in potato plants depresses the salt resistance. The results lay the groundwork for intensive study of BRs regulation in potato growth and development, and will help us to reveal the molecular mechanisms of how the BRs signaling regulate potato salt tolerance.
Collapse
Affiliation(s)
- Xiangyan Zhou
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Jiangwei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Xun Tang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Yikai Wen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Huaijun Si
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China.
| |
Collapse
|
19
|
Walitang DI, Kim CG, Kim K, Kang Y, Kim YK, Sa T. The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars. BMC PLANT BIOLOGY 2018; 18:51. [PMID: 29587643 PMCID: PMC5870378 DOI: 10.1186/s12870-018-1261-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/07/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Inherent characteristics and changes in the physiology of rice as it attains salt tolerance affect the colonizing bacterial endophytic communities of the rice seeds. These transmissible endophytes also serve as a source of the plant's microbial community and concurrently respond to the host and environmental conditions. This study explores the influence of the rice host as well as the impact of soil salinity on the community structure and diversity of seed bacterial endophytes of rice with varying tolerance to salt stress. Endophytic bacterial diversity was studied through culture-dependent technique and Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis. RESULTS Results revealed considerably diverse communities of bacterial endophytes in the interior of rice seeds. The overall endophytic bacterial communities of the indica rice seeds based on 16S rRNA analysis of clones and isolates are dominated by phylum Proteobacteria followed by Actinobacteria and Firmicutes. Community profiles show common ribotypes found in all cultivars of the indica subspecies representing potential core microbiota belonging to Curtobacterium, Flavobacterium, Enterobacter, Xanthomonas, Herbaspirillum, Microbacterium and Stenotrophomonas. Clustering analysis shows that the host genotype mainly influences the seed endophytic community of the different rice cultivars. Under salt stress conditions, endophytic communities of the salt-sensitive and salt-tolerant rice cultivars shift their dominance to bacterial groups belonging to Flavobacterium, Pantoea, Enterobacter, Microbacterium, Kosakonia and Curtobacterium. CONCLUSION The endophytic communities of rice indica seeds are shaped by the hosts' genotype, their physiological adaptation to salt stress and phylogenetic relatedness. Under salt stress conditions, a few groups of bacterial communities become prominent causing a shift in bacterial diversity and dominance.
Collapse
Affiliation(s)
- Denver I. Walitang
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Chang-Gi Kim
- Bio-Evaluation Center, KRIBB, Cheongju, 281-16 South Korea
| | - Kiyoon Kim
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Yeongyeong Kang
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Young Kee Kim
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| |
Collapse
|
20
|
Sarabi B, Bolandnazar S, Ghaderi N, Ghashghaie J. Genotypic differences in physiological and biochemical responses to salinity stress in melon (Cucumis melo L.) plants: Prospects for selection of salt tolerant landraces. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:294-311. [PMID: 28938176 DOI: 10.1016/j.plaphy.2017.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/29/2017] [Accepted: 09/08/2017] [Indexed: 05/21/2023]
Abstract
Melon (Cucumis melo L.) is one of the most important horticultural crops in Iran often cultivated in arid and semiarid regions of the country with salinity problems. The objective of this work was to better understand the mechanisms of physiological and biochemical responses to salinity stress of five Iranian melon landraces "Samsuri", "Kashan", "Khatouni", "Suski-e-Sabz", and "Ghobadlu" from different geographical origins, and "Galia" F1 cultivar. Plants were grown under greenhouse conditions and irrigated with half-strength Hoagland solution containing 0, 30, 60, or 90 mM NaCl for 60 days. Increase in the external salt concentration was accompanied by an obvious depression in leaf relative water content, membrane stability index, chlorophyll a and b and carotenoid contents, stomata and trichome density, leaf area, specific leaf area, biomass, leaf and stem K+ concentrations as well as leaf and stem K+/Na+ ratios in all landraces studied. In contrast, hydrogen peroxide, lipid peroxidation, proline and soluble carbohydrate contents, activity of antioxidant enzymes as well as leaf and stem Na+ and Cl- concentrations, all increased significantly with increasing stress over all plants. Moreover, carbon isotope discrimination (Δ13C), determined on leaf organic matter, was found to be associated with evaluated traits. For example, a highly positive correlation between Δ13C and both biomass production and salt tolerance index was notable when all saline treatments were averaged (r = 0.998 and 0.998, respectively). Also, scatter plot and clustering analysis showed that "Suski-e-Sabz" and "Ghobadlu" were placed close to "Galia" F1, a salt tolerant cultivar, indicating that their similar behavior under salinity. Overall, the present results indicated a significant genetic variability for most of the traits studied, suggesting that "Suski-e-Sabz" and "Ghobadlu" could be introduced as the superior landraces and the most promising tolerant parents in the future melon breeding programs due to their suitable performance, in terms of responses to salt stress as compared with other landraces. Also, Δ13C can be used as a powerful criterion in melon breeding programs aimed at selection of salt tolerant landraces.
Collapse
Affiliation(s)
- Behrooz Sarabi
- Department of Horticulture, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Sahebali Bolandnazar
- Department of Horticulture, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Nasser Ghaderi
- Department of Horticultural Sciences, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Jaleh Ghashghaie
- Ecologie, Systématique et Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| |
Collapse
|
21
|
Farooq M, Gogoi N, Hussain M, Barthakur S, Paul S, Bharadwaj N, Migdadi HM, Alghamdi SS, Siddique KHM. Effects, tolerance mechanisms and management of salt stress in grain legumes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:199-217. [PMID: 28648997 DOI: 10.1016/j.plaphy.2017.06.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 05/23/2023]
Abstract
Salt stress is an ever-present threat to crop yields, especially in countries with irrigated agriculture. Efforts to improve salt tolerance in crop plants are vital for sustainable crop production on marginal lands to ensure future food supplies. Grain legumes are a fascinating group of plants due to their high grain protein contents and ability to fix biological nitrogen. However, the accumulation of excessive salts in soil and the use of saline groundwater are threatening legume production worldwide. Salt stress disturbs photosynthesis and hormonal regulation and causes nutritional imbalance, specific ion toxicity and osmotic effects in legumes to reduce grain yield and quality. Understanding the responses of grain legumes to salt stress and the associated tolerance mechanisms, as well as assessing management options, may help in the development of strategies to improve the performance of grain legumes under salt stress. In this manuscript, we discuss the effects, tolerance mechanisms and management of salt stress in grain legumes. The principal inferences of the review are: (i) salt stress reduces seed germination (by up to more than 50%) either by inhibiting water uptake and/or the toxic effect of ions in the embryo, (ii) salt stress reduces growth (by more than 70%), mineral uptake, and yield (by 12-100%) due to ion toxicity and reduced photosynthesis, (iii) apoplastic acidification is a good indicator of salt stress tolerance, (iv) tolerance to salt stress in grain legumes may develop through excretion and/or compartmentalization of toxic ions, increased antioxidant capacity, accumulation of compatible osmolytes, and/or hormonal regulation, (v) seed priming and nutrient management may improve salt tolerance in grain legumes, (vi) plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi may help to improve salt tolerance due to better plant nutrient availability, and (vii) the integration of screening, innovative breeding, and the development of transgenics and crop management strategies may enhance salt tolerance and yield in grain legumes on salt-affected soils.
Collapse
Affiliation(s)
- Muhammad Farooq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, Perth, WA 6001, Australia; College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Nirmali Gogoi
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | - Mubshar Hussain
- Department of Agronomy, Bahauddin Zakariya University Multan, Pakistan
| | - Sharmistha Barthakur
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Sreyashi Paul
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | - Nandita Bharadwaj
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | - Hussein M Migdadi
- College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salem S Alghamdi
- College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
22
|
Biochemical and Physiological Response of Salsola arbuscula Callus to Salt Stress. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2017. [DOI: 10.1007/s40995-017-0252-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Sytar O, Brestic M, Zivcak M, Olsovska K, Kovar M, Shao H, He X. Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 578:90-99. [PMID: 27524726 DOI: 10.1016/j.scitotenv.2016.08.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 05/26/2023]
Abstract
Salinity represents an abiotic stress constraint affecting growth and productivity of plants in many regions of the world. One of the possible solutions is to improve the level of salt resistance using natural genetic variability within crop species. In the context of recent knowledge on salt stress effects and mechanisms of salt tolerance, this review present useful phenomic approach employing different non-invasive imaging systems for detection of quantitative and qualitative changes caused by salt stress at the plant and canopy level. The focus is put on hyperspectral imaging technique, which provides unique opportunities for fast and reliable estimate of numerous characteristics associated both with various structural, biochemical and physiological traits. The method also provides possibilities to combine plant and canopy analyses with a direct determination of salinity in soil. The future perspectives in salt stress applications as well as some limits of the method are also identified.
Collapse
Affiliation(s)
- Oksana Sytar
- Research Centre AgroBioTech, Slovak University of Agriculture in Nitra, A. Hlinku 2, Nitra, Slovak Republic
| | - Marian Brestic
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Department of Plant Physiology, Slovak University of Agriculture in Nitra, A. Hlinku 2, Nitra, Slovak Republic.
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture in Nitra, A. Hlinku 2, Nitra, Slovak Republic
| | - Katarina Olsovska
- Department of Plant Physiology, Slovak University of Agriculture in Nitra, A. Hlinku 2, Nitra, Slovak Republic
| | - Marek Kovar
- Department of Plant Physiology, Slovak University of Agriculture in Nitra, A. Hlinku 2, Nitra, Slovak Republic
| | - Hongbo Shao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Xiaolan He
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
24
|
Zhang N, Shi X, Guan Z, Zhao S, Zhang F, Chen S, Fang W, Chen F. Treatment with spermidine protects chrysanthemum seedlings against salinity stress damage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 105:260-270. [PMID: 27173095 DOI: 10.1016/j.plaphy.2016.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/01/2016] [Accepted: 05/01/2016] [Indexed: 05/04/2023]
Abstract
Salinity-stressed plants of salinity sensitive ('Qx096') and tolerant ('Qx097') chrysanthemum cultivar were treated with a range of concentrations of spermidine (Spd). Plant performance, as indicated by various parameters associated with growth, was improved by the treatment, as was the tissue content of soluble protein and proline. The extent of both Na(+) accumulation and K(+) loss was reduced. Activity levels of the stress-related enzymes SOD, POD, APX and CAT were significantly increased and the production of malondialdehyde (MDA) decreased. The suggestion was that treatment with 1.5 mM Spd would be an effective means alleviating salinity-stress induced injury through its positive effect on photosynthetic efficiency, reactive oxygen species scavenging ability and the control of ionic balance and osmotic potential. Its protective capacity was more apparent in 'Qx096' than in 'Qx097'.
Collapse
Affiliation(s)
- Naiyuan Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomeng Shi
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shuang Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiming Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
25
|
HanumanthaRao B, Nair RM, Nayyar H. Salinity and High Temperature Tolerance in Mungbean [Vigna radiata (L.) Wilczek] from a Physiological Perspective. FRONTIERS IN PLANT SCIENCE 2016; 7:957. [PMID: 27446183 PMCID: PMC4925713 DOI: 10.3389/fpls.2016.00957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/15/2016] [Indexed: 05/03/2023]
Abstract
Biotic and abiotic constraints seriously affect the productivity of agriculture worldwide. The broadly recognized benefits of legumes in cropping systems-biological nitrogen fixation, improving soil fertility and broadening cereal-based agro-ecologies, are desirable now more than ever. Legume production is affected by hostile environments, especially soil salinity and high temperatures (HTs). Among legumes, mungbean has acceptable intrinsic tolerance mechanisms, but many agro-physiological characteristics of the Vigna species remain to be explored. Mungbean has a distinct advantage of being short-duration and can grow in wide range of soils and environments (as mono or relay legume). This review focuses on salinity and HT stresses on mungbean grown as a fallow crop (mungbean-rice-wheat to replace fallow-rice-wheat) and/or a relay crop in cereal cropping systems. Salinity tolerance comprises multifaceted responses at the molecular, physiological and plant canopy levels. In HTs, adaptation of physiological and biochemical processes gradually may lead to improvement of heat tolerance in plants. At the field level, managing or manipulating cultural practices can mitigate adverse effects of salinity and HT. Greater understanding of physiological and biochemical mechanisms regulating these two stresses will contribute to an evolving profile of the genes, proteins, and metabolites responsible for mungbean survival. We focus on abiotic stresses in legumes in general and mungbean in particular, and highlight gaps that need to be bridged through future mungbean research. Recent findings largely from physiological and biochemical fronts are examined, along with a few agronomic and farm-based management strategies to mitigate stress under field conditions.
Collapse
Affiliation(s)
| | - Ramakrishnan M. Nair
- Vegetable Breeding – Legumes, World Vegetable Center, South AsiaHyderabad, India
| | - Harsh Nayyar
- Department of Botany, Panjab UniversityChandigarh, India
| |
Collapse
|
26
|
Cross-generic studies with rice indicate that ion homeostasis and antioxidant defense is associated with superior salinity tolerance in Cynodon dactylon (L.) Pers. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s40502-014-0129-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Zagorchev L, Kamenova P, Odjakova M. The role of plant cell wall proteins in response to salt stress. ScientificWorldJournal 2014; 2014:764089. [PMID: 24574917 PMCID: PMC3916024 DOI: 10.1155/2014/764089] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/29/2013] [Indexed: 12/14/2022] Open
Abstract
Contemporary agriculture is facing new challenges with the increasing population and demand for food on Earth and the decrease in crop productivity due to abiotic stresses such as water deficit, high salinity, and extreme fluctuations of temperatures. The knowledge of plant stress responses, though widely extended in recent years, is still unable to provide efficient strategies for improvement of agriculture. The focus of study has been shifted to the plant cell wall as a dynamic and crucial component of the plant cell that could immediately respond to changes in the environment. The investigation of plant cell wall proteins, especially in commercially important monocot crops revealed the high involvement of this compartment in plants stress responses, but there is still much more to be comprehended. The aim of this review is to summarize the available data on this issue and to point out the future areas of interest that should be studied in detail.
Collapse
Affiliation(s)
- Lyuben Zagorchev
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Boulevard, 1164 Sofia, Bulgaria
| | - Plamena Kamenova
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Boulevard, 1164 Sofia, Bulgaria
| | - Mariela Odjakova
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Boulevard, 1164 Sofia, Bulgaria
| |
Collapse
|
28
|
Theerakulp P, Gunnula W. Exogenous Sorbitol and Trehalose Mitigated Salt Stress Damage in Salt-sensitive but not Salt-tolerant Rice Seedlings. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajcs.2012.165.170] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Dhir B, Nasim S, Samantary S, Srivastava S. Assessment of Osmolyte Accumulation in Heavy Metal Exposed Salvinia natans. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ijb.2012.153.158] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Kong-ngern K, Bunnag S, Theerakulp P. Proline, Hydrogen Peroxide, Membrane Stability and Antioxidant Enzyme Activity as Potential Indicators for Salt Tolerance in Rice (Oryza sativa L.). ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ijb.2012.54.65] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Silini A, Silini-Chérif H, Ghoul M. Effect of Azotobacter vinelandii and compatible solutes on germination wheat seeds and root concentrations of sodium and potassium under salt stress. Pak J Biol Sci 2012; 15:132-140. [PMID: 22866543 DOI: 10.3923/pjbs.2012.132.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The effect of plant growth-promoting Rhizobacteria (PGPR) and exogenous application of compatible solutes on seed germination and root concentrations of sodium and potassium of two wheat varieties (Triticum durum L.) were evaluated under saline stress. In this experiment, Azotobacter vinelandii strain DSM85, glycine betaine and proline were used. Inoculated seeds for each variety were placed on Whatman paper in 9 cm Petri dishes containing 15 mL of distilled water or NaCl solutions at various concentrations (control, 100, 200, 300 mM) supplemented with or without glycine betaine (GB) or proline at 5 mM. The results indicated that addition of proline (5 mM) stimulated the production of indol acetic acid and the growth of A. vinelandii at 200 and 300 mM NaCl, respectively. The germination rate index and the germination final percentage decreased significantly (p < 0.05) with increasing salinity level. The germination was significantly diminished at 300 mM with significant variation among varieties and Waha variety had higher germination percentage than Bousselam variety. Inoculation of seeds by A. vinelandii and exogenous application of proline had significantly positive effect on the germination at this concentration of NaCl. The rate of accumulation of Na+ in roots was important at 100 mM and increased at 200 mM. The concentration of K+ decreased when salinity increased. The effect of inoculation or inoculation with proline decreased the accumulation of Na' and reduced the loss of K+ under salt stress. From the present study we can conclude that the use of A. vinelandii strain DSM85 and external application of low concentrations of proline on seeds might be considered as a strategy for the protection of plants under saline stress.
Collapse
Affiliation(s)
- A Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University of Ferhat-Abbas, Sétif, Algeria
| | | | | |
Collapse
|
32
|
Saleethong P, Sanitchon J, Kong-ngern K, Theerakulp P. Pretreatment with Spermidine Reverses Inhibitory Effects of Salt Stress in Two Rice (Oryza sativa L.) Cultivars Differing in Salinity Tolerance. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/ajps.2011.245.254] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Landouar-Arsivaud L, Juchaux-Cachau M, Jeauffre J, Biolley JP, Maurousset L, Lemoine R. The promoters of 3 celery salt-induced phloem-specific genes as new tools for monitoring salt stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:2-8. [PMID: 20980156 DOI: 10.1016/j.plaphy.2010.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 09/19/2010] [Accepted: 09/22/2010] [Indexed: 05/30/2023]
Abstract
Genes induced by a progressive 3 week salt stress (final NaCl concentration 300 mM) were identified in the phloem of celery (Apium graveolens L., cv Vert d'Elne). A subtractive library was constructed and screened for salt-induced, phloem-specific genes. Work was focused on phloem due to its central role in inter-organ exchanges. Three genes were studied in more details, 2 coding for metallothioneins (AgMT2 and AgMT3) and one for a new mannitol transporter (AgMaT3). Expression of a reporter gene in transgenic Arabidopsis under control of promoter of each gene was located in the phloem. pAgMT2 has a typical phloem pattern with slight induction by salt stress. pAgMT3 and pAgMaT3 expression was induced by salt stress, except in minor veins. pAgMaT3 was highly active in stressed roots. The promoters described here could be regarded as new tools for engineering salt-resistant plants.
Collapse
Affiliation(s)
- Lucie Landouar-Arsivaud
- UMR-CNRS-UP 6503, LACCO - Laboratoire de Catalyse en Chimie Organique, Equipe Physiologie Moléculaire du Transport de Sucres, Université de Poitiers, Bâtiment Botanique, 40 Avenue du Recteur Pineau, 86022 Poitiers cedex, France
| | | | | | | | | | | |
Collapse
|