1
|
Recent Emerging Immunological Treatments for Primary Brain Tumors: Focus on Chemokine-Targeting Immunotherapies. Cells 2023; 12:cells12060841. [PMID: 36980182 PMCID: PMC10046911 DOI: 10.3390/cells12060841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Primary brain tumors are a leading cause of death worldwide and are characterized by extraordinary heterogeneity and high invasiveness. Current drug and radiotherapy therapies combined with surgical approaches tend to increase the five-year survival of affected patients, however, the overall mortality rate remains high, thus constituting a clinical challenge for which the discovery of new therapeutic strategies is needed. In this field, novel immunotherapy approaches, aimed at overcoming the complex immunosuppressive microenvironment, could represent a new method of treatment for central nervous system (CNS) tumors. Chemokines especially are a well-defined group of proteins that were so named due to their chemotactic properties of binding their receptors. Chemokines regulate the recruitment and/or tissue retention of immune cells as well as the mobilization of tumor cells that have undergone epithelial–mesenchymal transition, promoting tumor growth. On this basis, this review focuses on the function and involvement of chemokines and their receptors in primary brain tumors, specifically examining chemokine-targeting immunotherapies as one of the most promising strategies in neuro-oncology.
Collapse
|
2
|
Advances in Chemokine Signaling Pathways as Therapeutic Targets in Glioblastoma. Cancers (Basel) 2021; 13:cancers13122983. [PMID: 34203660 PMCID: PMC8232256 DOI: 10.3390/cancers13122983] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
With a median patient survival of 15 months, glioblastoma (GBM) is still one of the deadliest malign tumors. Despite immense efforts, therapeutic regimens fail to prolong GBM patient overall survival due to various resistance mechanisms. Chemokine signaling as part of the tumor microenvironment plays a key role in gliomagenesis, proliferation, neovascularization, metastasis and tumor progression. In this review, we aimed to investigate novel therapeutic approaches targeting various chemokine axes, including CXCR2/CXCL2/IL-8, CXCR3/CXCL4/CXCL9/CXCL10, CXCR4/CXCR7/CXCL12, CXCR6/CXCL16, CCR2/CCL2, CCR5/CCL5 and CX3CR1/CX3CL1 in preclinical and clinical studies of GBM. We reviewed targeted therapies as single therapies, in combination with the standard of care, with antiangiogenic treatment as well as immunotherapy. We found that there are many antagonist-, antibody-, cell- and vaccine-based therapeutic approaches in preclinical and clinical studies. Furthermore, targeted therapies exerted their highest efficacy in combination with other established therapeutic applications. The novel chemokine-targeting therapies have mainly been examined in preclinical models. However, clinical applications are auspicious. Thus, it is crucial to broadly investigate the recently developed preclinical approaches. Promising preclinical applications should then be investigated in clinical studies to create new therapeutic regimens and to overcome therapy resistance to GBM treatment.
Collapse
|
3
|
Ali S, Borin TF, Piranlioglu R, Ara R, Lebedyeva I, Angara K, Achyut BR, Arbab AS, Rashid MH. Changes in the tumor microenvironment and outcome for TME-targeting therapy in glioblastoma: A pilot study. PLoS One 2021; 16:e0246646. [PMID: 33544755 PMCID: PMC7864405 DOI: 10.1371/journal.pone.0246646] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a hypervascular and aggressive primary malignant tumor of the central nervous system. Recent investigations showed that traditional therapies along with antiangiogenic therapies failed due to the development of post-therapy resistance and recurrence. Previous investigations showed that there were changes in the cellular and metabolic compositions in the tumor microenvironment (TME). It can be said that tumor cell-directed therapies are ineffective and rethinking is needed how to treat GBM. It is hypothesized that the composition of TME-associated cells will be different based on the therapy and therapeutic agents, and TME-targeting therapy will be better to decrease recurrence and improve survival. Therefore, the purpose of this study is to determine the changes in the TME in respect of T-cell population, M1 and M2 macrophage polarization status, and MDSC population following different treatments in a syngeneic model of GBM. In addition to these parameters, tumor growth and survival were also studied following different treatments. The results showed that changes in the TME-associated cells were dependent on the therapeutic agents, and the TME-targeting therapy improved the survival of the GBM bearing animals. The current GBM therapies should be revisited to add agents to prevent the accumulation of bone marrow-derived cells in the TME or to prevent the effect of immune-suppressive myeloid cells in causing alternative neovascularization, the revival of glioma stem cells, and recurrence. Instead of concurrent therapy, a sequential strategy would be better to target TME-associated cells.
Collapse
Affiliation(s)
- Sehar Ali
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Thaiz F. Borin
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Raziye Piranlioglu
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Roxan Ara
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Iryna Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia, United States of America
| | - Kartik Angara
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Bhagelu R. Achyut
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Ali Syed Arbab
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
- * E-mail: (ASA); (MHR)
| | - Mohammad H. Rashid
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail: (ASA); (MHR)
| |
Collapse
|
4
|
Arbab AS, Ali MM. Glioblastoma: Targeting Angiogenesis and Tyrosine Kinase Pathways. NOVEL APPROACHES IN CANCER STUDY 2020; 4:398-401. [PMID: 32924014 PMCID: PMC7486014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Angiogenesis is a hallmark of glioblastoma (GBM) and remains an important therapeutic target in its treatment, especially for recurrent GBM. GBMs are characterized by the release of vascular endothelial growth factor (VEGF), an important regulator and promoter of angiogenesis. Therefore, antiangiogenic therapies (AATs) targeting VEGF or VEGF receptors (VEGFRs) were designed and thought to be an effective tool for controlling the growth of GBM. However, recent results of different clinical trials using humanized monoclonal antibodies against VEGF (bevacizumab), as well as tyrosine kinase inhibitors (TKIs) that target different VEGFRs alone or in combination with other therapeutic agents demonstrated mixed results, with the majority of reports indicating that GBM developed resistance against antiangiogenic treatments.
Collapse
Affiliation(s)
- Ali S Arbab
- Tumor Angiogenesis Laboratory, Georgia Cancer Center, Augusta University, USA
| | - Meser M Ali
- Cellular and Molecular Imaging Lab, Department of Neurosurgery, Henry Ford Hospital, USA
| |
Collapse
|
5
|
Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 2019; 77:1745-1770. [PMID: 31690961 PMCID: PMC7190605 DOI: 10.1007/s00018-019-03351-7] [Citation(s) in RCA: 985] [Impact Index Per Article: 164.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Tumor vascularization occurs through several distinct biological processes, which not only vary between tumor type and anatomic location, but also occur simultaneously within the same cancer tissue. These processes are orchestrated by a range of secreted factors and signaling pathways and can involve participation of non-endothelial cells, such as progenitors or cancer stem cells. Anti-angiogenic therapies using either antibodies or tyrosine kinase inhibitors have been approved to treat several types of cancer. However, the benefit of treatment has so far been modest, some patients not responding at all and others acquiring resistance. It is becoming increasingly clear that blocking tumors from accessing the circulation is not an easy task to accomplish. Tumor vessel functionality and gene expression often differ vastly when comparing different cancer subtypes, and vessel phenotype can be markedly heterogeneous within a single tumor. Here, we summarize the current understanding of cellular and molecular mechanisms involved in tumor angiogenesis and discuss challenges and opportunities associated with vascular targeting.
Collapse
Affiliation(s)
- Roberta Lugano
- The Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Mohanraj Ramachandran
- The Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Anna Dimberg
- The Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden.
| |
Collapse
|
6
|
Zeng Y, Li B, Liang Y, Reeves PM, Qu X, Ran C, Liu Q, Callahan MV, Sluder AE, Gelfand JA, Chen H, Poznansky MC. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment. FASEB J 2019; 33:6596-6608. [PMID: 30802149 PMCID: PMC6463916 DOI: 10.1096/fj.201802067rr] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022]
Abstract
Blockade of immune-checkpoint programmed cell death protein 1 (PD-1) or programmed cell death ligand 1 can enhance effector T-cell responses. However, the lack of response in many patients to checkpoint-inhibitor therapies emphasizes the need for combination immunotherapies to pursue maximal antitumor efficacy. We have previously demonstrated that antagonism of C-X-C chemokine receptor type 4 (CXCR4) by plerixafor (AMD3100) can decrease regulatory T (Treg)-cell intratumoral infiltration. Therefore, a combination of these 2 therapies might increase antitumor effects. Here, we evaluated the antitumor efficacy of AMD3100 and anti-PD-1 (αPD-1) antibody alone or in combination in an immunocompetent syngeneic mouse model of ovarian cancer. We found that AMD3100, a highly specific CXCR4 antagonist, directly down-regulated the expression of both C-X-C motif chemokine 12 (CXCL12) and CXCR4 in vitro and in vivo in tumor cells. AMD3100 and αPD-1 significantly inhibited tumor growth and prolonged the survival of tumor-bearing mice when given as monotherapy. Combination of these 2 agents significantly enhanced antitumor effects compared with single-agent administration. Benefits of tumor control and animal survival were associated with immunomodulation mediated by these 2 agents, which were characterized by increased effector T-cell infiltration, increased effector T-cell function, and increased memory T cells in tumor microenvironment. Intratumoral Treg cells were decreased, and conversion of Treg cells into T helper cells was increased by AMD3100 treatment. Intratumoral myeloid-derived suppressor cells were decreased by the combined treatment, which was associated with decreased IL-10 and IL-6 in the ascites. Also, the combination therapy decreased suppressive leukocytes and facilitated M2-to-M1 macrophage polarization in the tumor. These results suggest that AMD3100 could be used to target the CXCR4-CXCL12 axis to inhibit tumor growth and prevent multifaceted immunosuppression alone or in combination with αPD-1 in ovarian cancer, which could be clinically relevant to patients with this disease.-Zeng, Y., Li, B., Liang, Y., Reeves, P. M., Qu, X., Ran, C., Liu, Q., Callahan, M. V., Sluder, A. E., Gelfand, J. A., Chen, H., Poznansky, M. C. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment.
Collapse
Affiliation(s)
- Yang Zeng
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Binghao Li
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yingying Liang
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Patrick M. Reeves
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Xiying Qu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Chongzhao Ran
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA; and
| | - Qiuyan Liu
- National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai, China
| | - Michael V. Callahan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Ann E. Sluder
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jeffrey A. Gelfand
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Huabiao Chen
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
7
|
Darvishi B, Majidzadeh-A K, Ghadirian R, Mosayebzadeh M, Farahmand L. Recruited bone marrow derived cells, local stromal cells and IL-17 at the front line of resistance development to anti-VEGF targeted therapies. Life Sci 2018; 217:34-40. [PMID: 30472294 DOI: 10.1016/j.lfs.2018.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022]
Abstract
Although anti-angiogenic agents targeting VEGF have shown affordable beneficial outcomes in several human cancer types, in most pre-clinical and clinical studies, these effects are transient and followed by rapid relapse and tumor regrowth. Recently, it has been suggested that recruited bone marrow derived cells (BMDCs) to the tumor-microenvironment together with stromal cells play an important role in development of resistance to anti-VEGF therapies. Additionally, acquired resistance to anti-VEGF therapies has shown to be mediated partly through overexpression of different pro-angiogenic cytokines and growth factors including G-CSF, IL-6, IL-8, VEGF and FGF by these cells. Alongside, IL-17, a pro-inflammatory cytokine, mostly secreted by infiltrated CD4+ T helper cells, has shown to mediate resistance to anti-VEGF therapies, through recruiting BMDCs and modulating stromal cells activities including endothelial cells, tumor associated macrophages and cancer associated fibroblasts. Here, we examined the role of BMDCs, tumor stromal cells, IL-17 and their negotiation in development of resistance to anti-VEGF targeted therapies.
Collapse
Affiliation(s)
- Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Tasnim Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reihane Ghadirian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Marjan Mosayebzadeh
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
8
|
Ma S, Pradeep S, Hu W, Zhang D, Coleman R, Sood A. The role of tumor microenvironment in resistance to anti-angiogenic therapy. F1000Res 2018; 7:326. [PMID: 29560266 PMCID: PMC5854986 DOI: 10.12688/f1000research.11771.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2018] [Indexed: 12/11/2022] Open
Abstract
Anti-angiogenic therapy has been demonstrated to increase progression-free survival in patients with many different solid cancers. Unfortunately, the benefit in overall survival is modest and the rapid emergence of drug resistance is a significant clinical problem. Over the last decade, several mechanisms have been identified to decipher the emergence of resistance. There is a multitude of changes within the tumor microenvironment (TME) in response to anti-angiogenic therapy that offers new therapeutic opportunities. In this review, we compile results from contemporary studies related to adaptive changes in the TME in the development of resistance to anti-angiogenic therapy. These include preclinical models of emerging resistance, dynamic changes in hypoxia signaling and stromal cells during treatment, and novel strategies to overcome resistance by targeting the TME.
Collapse
Affiliation(s)
- Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Reproductive Medicine Research Center, Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong province, China
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dikai Zhang
- Reproductive Medicine Research Center, Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong province, China
| | - Robert Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Arbab AS, Rashid MH, Angara K, Borin TF, Lin PC, Jain M, Achyut BR. Major Challenges and Potential Microenvironment-Targeted Therapies in Glioblastoma. Int J Mol Sci 2017; 18:ijms18122732. [PMID: 29258180 PMCID: PMC5751333 DOI: 10.3390/ijms18122732] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is considered one of the most malignant, genetically heterogeneous, and therapy-resistant solid tumor. Therapeutic options are limited in GBM and involve surgical resection followed by chemotherapy and/or radiotherapy. Adjuvant therapies, including antiangiogenic treatments (AATs) targeting the VEGF–VEGFR pathway, have witnessed enhanced infiltration of bone marrow-derived myeloid cells, causing therapy resistance and tumor relapse in clinics and in preclinical models of GBM. This review article is focused on gathering previous clinical and preclinical reports featuring major challenges and lessons in GBM. Potential combination therapies targeting the tumor microenvironment (TME) to overcome the myeloid cell-mediated resistance problem in GBM are discussed. Future directions are focused on the use of TME-directed therapies in combination with standard therapy in clinical trials, and the exploration of novel therapies and GBM models for preclinical studies. We believe this review will guide the future of GBM research and therapy.
Collapse
Affiliation(s)
- Ali S Arbab
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Mohammad H Rashid
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Kartik Angara
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Thaiz F Borin
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Ping-Chang Lin
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Meenu Jain
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Bhagelu R Achyut
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
10
|
Angara K, Borin TF, Arbab AS. Vascular Mimicry: A Novel Neovascularization Mechanism Driving Anti-Angiogenic Therapy (AAT) Resistance in Glioblastoma. Transl Oncol 2017; 10:650-660. [PMID: 28668763 PMCID: PMC5496207 DOI: 10.1016/j.tranon.2017.04.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is a hypervascular neoplasia of the central nervous system with an extremely high rate of mortality. Owing to its hypervascularity, anti-angiogenic therapies (AAT) have been used as an adjuvant to the traditional surgical resection, chemotherapy, and radiation. The benefits of AAT have been transient and the tumors were shown to relapse faster and demonstrated particularly high rates of AAT therapy resistance. Alternative neovascularization mechanisms were shown to be at work in these resilient tumors to counter the AAT therapy insult. Vascular Mimicry (VM) is the uncanny ability of tumor cells to acquire endothelial-like properties and lay down vascular patterned networks reminiscent of host endothelial blood vessels. The VM channels served as an irrigation system for the tumors to meet with the increasing metabolic and nutrient demands of the tumor in the event of the ensuing hypoxia resulting from AAT. In our previous studies, we have demonstrated that AAT accelerates VM in GBM. In this review, we will focus on the origins of VM, visualizing VM in AAT-treated tumors and the development of VM as a resistance mechanism to AAT.
Collapse
Affiliation(s)
- Kartik Angara
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Thaiz F Borin
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Ali S Arbab
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
11
|
Wang Y, Gao S, Wang W, Liang J. Temozolomide inhibits cellular growth and motility via targeting ERK signaling in glioma C6 cells. Mol Med Rep 2016; 14:5732-5738. [DOI: 10.3892/mmr.2016.5964] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 08/08/2016] [Indexed: 11/06/2022] Open
|