El-Tantawy WH, Mohamed SAH, Abd Al Haleem EN. Evaluation of biochemical effects of Casuarina equisetifolia extract on gentamicin-induced nephrotoxicity and oxidative stress in rats. Phytochemical analysis.
J Clin Biochem Nutr 2013;
53:158-65. [PMID:
24249970 PMCID:
PMC3818266 DOI:
10.3164/jcbn.13-19]
[Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 03/27/2013] [Indexed: 11/22/2022] Open
Abstract
Nephrotoxicity is defined as renal dysfunction that arises as result of exposure to external agents such as drugs and environmental chemicals. The present work was undertaken to carry out the phytochemical study and nephroprotective activity of methanolic extract of Casuarina equisetifolia leaves in gentamicin-induced nephrotoxicity in Wistar rats. Flavonoids and phenolic acids were identified and quantified using high performance liquid chromatography. Subcutaneous injection of rats with gentamicin (80 mg/kg body weight/day) for six consecutive days induced marked acute renal toxicity, manifested by a significant increase in serum urea, creatinine and uric acid levels, along with a significant depletion of serum potassium level, compared to normal controls. Also oxidative stress was noticed in renal tissue as evidenced by a significant decrease in glutathione level, superoxide dismutase, glutathione-S-transferase activities, also a significant increase in malondialdehyde and nitric oxide levels when compared to control group. Administration of plant extract at a dose of 300 mg/kg once daily for 4 weeks restored normal renal functions and attenuated oxidative stress. In conclusion, Casuarina equisetifolia leaves extract ameliorates gentamicin-induced nephrotoxicity and oxidative damage by scavenging oxygen free radicals, decreasing lipid peroxidation and improving intracellular antioxidant defense, thus extract may be used as nephroprotective agent.
Collapse