2
|
Catarino MD, Amarante SJ, Mateus N, Silva AMS, Cardoso SM. Brown Algae Phlorotannins: A Marine Alternative to Break the Oxidative Stress, Inflammation and Cancer Network. Foods 2021; 10:foods10071478. [PMID: 34202184 PMCID: PMC8307260 DOI: 10.3390/foods10071478] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 02/07/2023] Open
Abstract
According to the WHO, cancer was responsible for an estimated 9.6 million deaths in 2018, making it the second global leading cause of death. The main risk factors that lead to the development of this disease include poor behavioral and dietary habits, such as tobacco use, alcohol use and lack of fruit and vegetable intake, or physical inactivity. In turn, it is well known that polyphenols are deeply implicated with the lower rates of cancer in populations that consume high levels of plant derived foods. In this field, phlorotannins have been under the spotlight in recent years since they have shown exceptional bioactive properties, with great interest for application in food and pharmaceutical industries. Among their multiple bioactive properties, phlorotannins have revealed the capacity to interfere with several biochemical mechanisms that regulate oxidative stress, inflammation and tumorigenesis, which are central aspects in the pathogenesis of cancer. This versatility and ability to act either directly or indirectly at different stages and mechanisms of cancer growth make these compounds highly appealing for the development of new therapeutical strategies to address this world scourge. The present manuscript revises relevant studies focusing the effects of phlorotannins to counteract the oxidative stress-inflammation network, emphasizing their potential for application in cancer prevention and/or treatment.
Collapse
Affiliation(s)
- Marcelo D. Catarino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.D.C.); (S.J.A.); (A.M.S.S.)
| | - Sónia J. Amarante
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.D.C.); (S.J.A.); (A.M.S.S.)
| | - Nuno Mateus
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.D.C.); (S.J.A.); (A.M.S.S.)
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.D.C.); (S.J.A.); (A.M.S.S.)
- Correspondence: ; Tel.: +351-234-370-360; Fax: +351-234-370-084
| |
Collapse
|
3
|
Yim MJ, Lee JM, Kim HS, Choi G, Kim YM, Lee DS, Choi IW. Inhibitory Effects of a Sargassum miyabei Yendo on Cutibacterium acnes-Induced Skin Inflammation. Nutrients 2020; 12:E2620. [PMID: 32867396 PMCID: PMC7551756 DOI: 10.3390/nu12092620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
Acne vulgaris is a chronic inflammatory condition of skin sebaceous follicles. To explore its effects on acne vulgaris, we investigated the antibacterial and anti-inflammatory activities of Sargassum miyabei Yendo (a brown alga) ethanolic extract (SMYEE) on Cutibacterium acnes (C. acnes)-stimulated inflammatory responses, both in vivo and in vitro. To induce inflammation in vivo, C. acnes was intradermally injected into the dorsal skin of mice, to which SMYEE was applied. The antimicrobial activity of SMYEE was evaluated by the determination of minimum inhibitory concentrations (MICs). To explore in vitro anti-inflammatory effects, HaCaT cells were stimulated with C. acnes after treatment with SMYEE. The levels of IL-8 and the underlying molecular effects in C. acnes-stimulated HaCaT cells were assessed by enzyme-linked immunosorbent assay, Western blotting, and an electrophoretic mobility shift assay. Mouse skin lesions improved after treatment with SMYEE (50 μg/mouse). Neutrophil infiltration was significantly reduced in SMYEE-treated compared to SMYEE-untreated skin lesions. SMYEE reversed the C. acnes-induced increase in IL-8 levels in HaCaT cells and suppressed dHL-60 cell migration. SMYEE also inhibited C. acnes-induced phosphorylation of the extracellular signal-regulated kinase and inhibited activator protein-1 signaling. SMYEE may be a useful treatment for C. acnes-induced acne vulgaris.
Collapse
Affiliation(s)
- Mi-Jin Yim
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (M.-J.Y.); (J.M.L.); (H.-S.K.); (G.C.)
| | - Jeong Min Lee
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (M.-J.Y.); (J.M.L.); (H.-S.K.); (G.C.)
| | - Hyun-Soo Kim
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (M.-J.Y.); (J.M.L.); (H.-S.K.); (G.C.)
| | - Grace Choi
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (M.-J.Y.); (J.M.L.); (H.-S.K.); (G.C.)
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea;
| | - Dae-Sung Lee
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (M.-J.Y.); (J.M.L.); (H.-S.K.); (G.C.)
| | - Il-Whan Choi
- Department of Microbiology and Immunology, College of Medicine Inje University, Busan 47392, Korea
| |
Collapse
|
4
|
Lopes D, Melo T, Rey F, Meneses J, Monteiro FL, Helguero LA, Abreu MH, Lillebø AI, Calado R, Domingues MR. Valuing Bioactive Lipids from Green, Red and Brown Macroalgae from Aquaculture, to Foster Functionality and Biotechnological Applications. Molecules 2020; 25:E3883. [PMID: 32858862 PMCID: PMC7504498 DOI: 10.3390/molecules25173883] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 01/18/2023] Open
Abstract
Marine edible macroalgae have functional proprieties that might improve human health and wellbeing. Lipids represent a minor fraction of macroalgae, yet with major interest as main carriers of omega 3 polyunsaturated fatty acids and intrinsic bioactive properties. In this study, we used lipid extracts from the green macroalgae Ulva rigida and Codium tomentosum; the red Gracilaria gracilis,Palmaria palmata and Porphyra dioica; and the brown Fucus vesiculosus, produced in a land-based integrated multitrophic aquaculture (IMTA) system. We determined the lipid quality indices based on their fatty acid profiles and their bioactivities as putative antioxidant, anti-inflammatory and antiproliferative agents. The results reveal to be species-specific, namely U. rigida displayed the lowest atherogenicity and thrombogenicity indices. Palmaria palmata and F. vesiculosus lipid extracts displayed the lowest inhibitory concentration in the free radical scavenging antioxidant assays. Ulva rigida, C. tomentosum, P. palmata and P. dioica inhibited COX-2 activity by up to 80%, while P. dioica and P. palmata extracts showed the highest cytotoxic potential in the MDA-MB-231 breast cancer cells. This work enhances the valorization of macroalgae as functional foods and promising ingredients for sustainable and healthy diets and fosters new applications of high-valued algal biomass, in a species-specific context.
Collapse
Affiliation(s)
- Diana Lopes
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (F.R.); (J.M.)
- Centre for Environmental and Marine Studies, CESAM, ECOMARE, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (A.I.L.); (R.C.)
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (F.R.); (J.M.)
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Felisa Rey
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (F.R.); (J.M.)
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Joana Meneses
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (F.R.); (J.M.)
| | - Fátima Liliana Monteiro
- iBIMED-Institute of Biomedicine, Department of Medical Sciences, Universidade de Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (F.L.M.); (L.A.H.)
| | - Luisa A. Helguero
- iBIMED-Institute of Biomedicine, Department of Medical Sciences, Universidade de Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (F.L.M.); (L.A.H.)
| | - Maria Helena Abreu
- ALGAplus-Production and Trading of Seaweeds and Derived Products Lda., 3830-196 Ílhavo, Portugal;
| | - Ana Isabel Lillebø
- Centre for Environmental and Marine Studies, CESAM, ECOMARE, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (A.I.L.); (R.C.)
| | - Ricardo Calado
- Centre for Environmental and Marine Studies, CESAM, ECOMARE, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (A.I.L.); (R.C.)
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (F.R.); (J.M.)
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Saraswati, Giriwono PE, Iskandriati D, Tan CP, Andarwulan N. Sargassum Seaweed as a Source of Anti-Inflammatory Substances and the Potential Insight of the Tropical Species: A Review. Mar Drugs 2019; 17:E590. [PMID: 31627414 PMCID: PMC6835611 DOI: 10.3390/md17100590] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 02/06/2023] Open
Abstract
Sargassum is recognized both empirically and scientifically as a potential anti-inflammatory agent. Inflammation is an important response in the body that helps to overcome various challenges to body homeostasis such as microbial infections, tissue stress, and certain injuries. Excessive and uncontrolled inflammatory conditions can affect the pathogenesis of various diseases. This review aims to explore the potential of Sargassum's anti-inflammatory activity, not only in crude extracts but also in sulfated polysaccharides and purified compounds. The tropical region has a promising availability of Sargassum biomass because its climate allows for the optimal growth of seaweed throughout the year. This is important for its commercial utilization as functional ingredients for both food and non-food applications. To the best of our knowledge, studies related to Sargassum's anti-inflammatory activity are still dominated by subtropical species. Studies on tropical Sargassum are mainly focused on the polysaccharides group, though there are some other potentially bioactive compounds such as polyphenols, terpenoids, fucoxanthin, fatty acids and their derivatives, typical polar lipids, and other groups. Information on the modulation mechanism of Sargassum's bioactive compounds on the inflammatory response is also discussed here, but specific mechanisms related to the interaction between bioactive compounds and targets in cells still need to be further studied.
Collapse
Affiliation(s)
- Saraswati
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (S.); (P.E.G.)
| | - Puspo Edi Giriwono
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (S.); (P.E.G.)
- Southeast Asian Food and Agricultural Science Technology (SEAFAST) Center, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Diah Iskandriati
- Primate Research Center, Bogor Agricultural University, Bogor 16151, Indonesia;
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nuri Andarwulan
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (S.); (P.E.G.)
- Southeast Asian Food and Agricultural Science Technology (SEAFAST) Center, Bogor Agricultural University, Bogor 16680, Indonesia
| |
Collapse
|
6
|
Ramu S, Mahendra SA, Kunchakuri K, Karadi PP, Swetha K, Radhakrishnan G. Isolation, characterisation and in vitro screening of anticataract potential of Fucoidan from Sargassum wightii Greville. JOURNAL OF HERBMED PHARMACOLOGY 2018. [DOI: 10.15171/jhp.2018.37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|