1
|
Wu YH, Zhang Y, Fang DQ, Chen J, Wang JA, Jiang L, Lv ZF. Characterization of the Composition and Biological Activity of the Venom from Vespa bicolor Fabricius, a Wasp from South China. Toxins (Basel) 2022; 14:toxins14010059. [PMID: 35051036 PMCID: PMC8777732 DOI: 10.3390/toxins14010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
We analyzed, for the first time, the major components and biological properties of the venom of Vespa bicolor, a wasp from South China. Using HPLC and SDS-PAGE, combined with LC–MS/MS, MALDI-TOF-MS, and NMR data to analyze V. bicolor venom (VBV), we found that VBV contains three proteins (hyaluronidase A, phospholipase A1 (two isoforms), and antigen 5 protein) with allergenic activity, two unreported proteins (proteins 5 and 6), and two active substances with large quantities (mastoparan-like peptide 12a (Vb-MLP 12a), and 5-hydroxytryptamine (5-HT)). In addition, the antimicrobial activity of VBV was determined, and results showed that it had a significant effect against anaerobic bacteria. The minimum inhibitory concentration and minimum bactericidal concentration for Propionibacterium acnes were 12.5 µg/mL. Unsurprisingly, VBV had strong antioxidant activity because of the abundance of 5-HT. Contrary to other Vespa venom, VBV showed significant anti-inflammatory activity, even at low concentrations (1 µg/mL), and we found that Vb-MLP 12a showed pro-inflammatory activity by promoting the proliferation of RAW 264.7 cells. Cytotoxicity studies showed that VBV had similar antiproliferative effects against all tested tumor cell lines (HepG2, Hela, MCF-7, A549, and SASJ-1), with HepG2 being the most susceptible. Overall, this study on VBV has high clinical importance and promotes the development of Vespa bicolor resources.
Collapse
Affiliation(s)
- Yong-Hua Wu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.-H.W.); (D.-Q.F.)
- Guangdong Technology Research Center for Advanced Chinese Medicine, Sun Yat-Sen University, Guangzhou 510006, China; (Y.Z.); (J.C.)
- Production and Research Base for Wasp Deinsectization, Guangdong Huxin Biotech Technology Co., Ltd., Jiangmen 529245, China;
| | - Yu Zhang
- Guangdong Technology Research Center for Advanced Chinese Medicine, Sun Yat-Sen University, Guangzhou 510006, China; (Y.Z.); (J.C.)
| | - Dan-Qiao Fang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.-H.W.); (D.-Q.F.)
| | - Jing Chen
- Guangdong Technology Research Center for Advanced Chinese Medicine, Sun Yat-Sen University, Guangzhou 510006, China; (Y.Z.); (J.C.)
| | - Jing-An Wang
- Production and Research Base for Wasp Deinsectization, Guangdong Huxin Biotech Technology Co., Ltd., Jiangmen 529245, China;
| | - Lin Jiang
- Guangdong Technology Research Center for Advanced Chinese Medicine, Sun Yat-Sen University, Guangzhou 510006, China; (Y.Z.); (J.C.)
- Correspondence: (L.J.); (Z.-F.L.)
| | - Zhu-Fen Lv
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.-H.W.); (D.-Q.F.)
- Correspondence: (L.J.); (Z.-F.L.)
| |
Collapse
|
2
|
Batista Martins D, Fadel V, Oliveira FD, Gaspar D, Alvares DS, Castanho MARB, Dos Santos Cabrera MP. Protonectin peptides target lipids, act at the interface and selectively kill metastatic breast cancer cells while preserving morphological integrity. J Colloid Interface Sci 2021; 601:517-530. [PMID: 34090029 DOI: 10.1016/j.jcis.2021.05.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/24/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022]
Abstract
Despite the need for innovative compounds as antimicrobial and anticancer agents, natural sources of peptides remain underexplored. Protonectin (PTN), a cationic dodecapeptide of pharmacological interest, presents large hydrophobicity that is associated with the tendency to aggregate and supposedly influences bioactivity. A disaggregating role was assigned to PTN' N-terminal fragment (PTN1-6), which enhances the bioactivity of PTN in a 1:1 mixture (PTN/PTN1-6). Spectroscopic techniques and model membranes (phospholipid bilayers and SDS micelles) revealed that environment-dependent aggregation is reduced for PTN/PTN1-6, but cytotoxicity of PTNs on MDA-MB-231 breast cancer showed the same CC50 values around 16 µM and on MCF-10A epithelial breast cells 6 to 5-fold higher values, revealing a selective interaction. Since PTN1-6 lacks activity on breast cells, its presence should differently affect PTN activity, suggesting that aggregation could modulate activity depending on the membrane characteristics. Indeed, increased partitioning and lytic activity of PTN/PTN1-6 were found in model membranes independently of charge density, but affected by the curvature tendency. PTN and PTN/PTN1-6 do not alter morphology and roughness of cancer cells, indicating a superficial interaction with membranes and consistent with results obtained in NMR experiments. Our results indicate that aggregation of PTNs depends on the membrane characteristics and modulates the activity of the peptides.
Collapse
Affiliation(s)
- Danubia Batista Martins
- Departamento de Física, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas (IBILCE), R. Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Valmir Fadel
- Departamento de Física, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas (IBILCE), R. Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Filipa D Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Diana Gaspar
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Dayane S Alvares
- Departamento de Física, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas (IBILCE), R. Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marcia Perez Dos Santos Cabrera
- Departamento de Física, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas (IBILCE), R. Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil; Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas (IBILCE), R. Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil.
| |
Collapse
|
3
|
Klupczynska A, Plewa S, Dereziński P, Garrett TJ, Rubio VY, Kokot ZJ, Matysiak J. Identification and quantification of honeybee venom constituents by multiplatform metabolomics. Sci Rep 2020; 10:21645. [PMID: 33303913 PMCID: PMC7729905 DOI: 10.1038/s41598-020-78740-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Honeybee (Apis mellifera) venom (HBV) has been a subject of extensive proteomics research; however, scarce information on its metabolite composition can be found in the literature. The aim of the study was to identify and quantify the metabolites present in HBV. To gain the highest metabolite coverage, three different mass spectrometry (MS)-based methodologies were applied. In the first step, untargeted metabolomics was used, which employed high-resolution, accurate-mass Orbitrap MS. It allowed obtaining a broad overview of HBV metabolic components. Then, two targeted metabolomics approaches, which employed triple quadrupole MS, were applied to quantify metabolites in HBV samples. The untargeted metabolomics not only confirmed the presence of amines, amino acids, carbohydrates, and organic acids in HBV, but also provided information on venom components from other metabolite classes (e.g., nucleosides, alcohols, purine and pyrimidine derivatives). The combination of three MS-based metabolomics platforms facilitated the identification of 214 metabolites in HBV samples, among which 138 were quantified. The obtaining of the wide free amino acid profiles of HBV is one of the project’s achievements. Our study contributed significantly to broadening the knowledge about HBV composition and should be continued to obtain the most comprehensive metabolite profile of HBV.
Collapse
Affiliation(s)
- Agnieszka Klupczynska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780, Poznan, Poland.
| | - Szymon Plewa
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780, Poznan, Poland
| | - Paweł Dereziński
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780, Poznan, Poland
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Vanessa Y Rubio
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Zenon J Kokot
- Faculty of Health Sciences, Calisia University - Kalisz, Poland, 62-800, Kalisz, Poland
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780, Poznan, Poland
| |
Collapse
|
4
|
Domínguez-Martín EM, Tavares J, Ríjo P, Díaz-Lanza AM. Zoopharmacology: A Way to Discover New Cancer Treatments. Biomolecules 2020; 10:biom10060817. [PMID: 32466543 PMCID: PMC7356688 DOI: 10.3390/biom10060817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/25/2022] Open
Abstract
Zoopharmacognosy is the multidisciplinary approach of the self-medication behavior of many kinds of animals. Recent studies showed the presence of antitumoral secondary metabolites in some of the plants employed by animals and their use for the same therapeutic purposes in humans. Other related and sometimes confused term is Zootherapy, which consists on the employment of animal parts and/or their by-products such as toxins, venoms, etc., to treat different human ailments. Therefore, the aim of this work is to provide a brief insight for the use of Zoopharmacology (comprising Zoopharmacognosy and Zootherapy) as new paths to discover drugs studying animal behavior and/or using compounds derived from animals. This work is focused on the approaches related to cancer, in order to propose a new promising line of research to overcome multidrug resistance (MDR). This novel subject will encourage the use of new alternative prospective ways to find new medicines.
Collapse
Affiliation(s)
- Eva María Domínguez-Martín
- CBIOS-Center for Research in Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologías, Campo Grande 376, 1749-024 Lisbon, Portugal; (E.M.D.-M.); (J.T.); (P.R.)
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Carretera Madrid-Barcelona, Km 33.100, 28805 Alcalá de Henares, Madrid, Spain
| | - Joana Tavares
- CBIOS-Center for Research in Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologías, Campo Grande 376, 1749-024 Lisbon, Portugal; (E.M.D.-M.); (J.T.); (P.R.)
| | - Patrícia Ríjo
- CBIOS-Center for Research in Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologías, Campo Grande 376, 1749-024 Lisbon, Portugal; (E.M.D.-M.); (J.T.); (P.R.)
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana María Díaz-Lanza
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Carretera Madrid-Barcelona, Km 33.100, 28805 Alcalá de Henares, Madrid, Spain
- Correspondence: ; Tel.: +34-918-854-642
| |
Collapse
|
5
|
Yang L, Yang Y, Liu MM, Yan ZC, Qiu LM, Fang Q, Wang F, Werren JH, Ye GY. Identification and Comparative Analysis of Venom Proteins in a Pupal Ectoparasitoid, Pachycrepoideus vindemmiae. Front Physiol 2020; 11:9. [PMID: 32038312 PMCID: PMC6993573 DOI: 10.3389/fphys.2020.00009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
Parasitoid wasps inject venom containing complex bioactive compounds to regulate the immune response and development of host arthropods and sometime paralyze host arthropods. Although extensive studies have been conducted on the identification of venom proteins in larval parasitoids, relatively few studies have examined the pupal parasitoids. In our current study, a combination of transcriptomic and proteomic methods was used to identify 64 putative venom proteins from Pachycrepoideus vindemmiae, an ectoparasitoid of Drosophila. Expression analysis revealed that 20 tested venom proteins have 419-fold higher mean expression in the venom apparatus than in other wasp tissues, indicating their specialization to venom. Comparisons of venom proteins from P. vindemmiae and other five species spanning three parasitoid families detected a core set of "ancient" orthologs in Pteromalidae. Thirty-five venom proteins of P. vindemmiae were assigned to the orthologous groups by reciprocal best matches with venoms of other pteromalids, while the remaining 29 were not. Of the 35 categories, twenty-seven have orthologous relationships with Nasonia vitripennis venom proteins and 25 with venoms of Pteromalus puparum. More distant relationships detected that five and two venom proteins of P. vindemmiae are orthologous with venoms of two Figitidae parasitoids and a Braconidae representative, respectively. Moreover, twenty-two venoms unique to P. vindemmiae were also detected, indicating considerable interspecific variation of venom proteins in parasitoids. Phylogenetic reconstruction based on a set of single-copy genes clustered P. vindemmiae with P. puparum, N. vitripennis, and other members of the family Pteromalidae. These findings provide strong evidence that P. vindemmiae venom proteins are well positioned for future functional and evolutionary studies.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yi Yang
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ming-Ming Liu
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhi-Chao Yan
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Ming Qiu
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - John H. Werren
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|