1
|
Cao J, Liu Y, Zhou M, Dong S, Hou Y, Jia X, Lan X, Zhang Y, Guo J, Xiao G, Wang W. Screening of Botanical Drugs against SARS-CoV-2 Entry Reveals Novel Therapeutic Agents to Treat COVID-19. Viruses 2022; 14:v14020353. [PMID: 35215943 PMCID: PMC8877376 DOI: 10.3390/v14020353] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 01/27/2023] Open
Abstract
An escalating pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely impacted global health. There is a severe lack of specific treatment options for diseases caused by SARS-CoV-2. In this study, we used a pseudotype virus (pv) containing the SARS-CoV-2 S glycoprotein to screen a botanical drug library containing 1037 botanical drugs to identify agents that prevent SARS-CoV-2 entry into the cell. Our study identified four hits, including angeloylgomisin O, schisandrin B, procyanidin, and oleanonic acid, as effective SARS-CoV-2 S pv entry inhibitors in the micromolar range. A mechanistic study revealed that these four agents inhibited SARS-CoV-2 S pv entry by blocking spike (S) protein-mediated membrane fusion. Furthermore, angeloylgomisin O and schisandrin B inhibited authentic SARS-CoV-2 with a high selective index (SI; 50% cytotoxic concentration/50% inhibition concentration). Our drug combination studies performed in cellular antiviral assays revealed that angeloylgomisin O has synergistic effects in combination with remdesivir, a drug widely used to treat SARS-CoV-2-mediated infections. We also showed that two hits could inhibit the newly emerged alpha (B.1.1.7) and beta (B.1.351) variants. Our findings collectively indicate that angeloylgomisin O and schisandrin B could inhibit SARS-CoV-2 efficiently, thereby making them potential therapeutic agents to treat the coronavirus disease of 2019.
Collapse
Affiliation(s)
- Junyuan Cao
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
| | - Minmin Zhou
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Siqi Dong
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxia Hou
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoying Jia
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohao Lan
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yueli Zhang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Jiao Guo
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (J.C.); (Y.L.); (M.Z.); (S.D.); (Y.H.); (X.J.); (X.L.); (Y.Z.); (J.G.); (G.X.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-87198232
| |
Collapse
|
2
|
A Rapid UPLC-MS Method for Quantification of Gomisin D in Rat Plasma and Its Application to a Pharmacokinetic and Bioavailability Study. Molecules 2019; 24:molecules24071403. [PMID: 30974748 PMCID: PMC6479676 DOI: 10.3390/molecules24071403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/02/2019] [Accepted: 04/07/2019] [Indexed: 12/15/2022] Open
Abstract
Gomisin D, a lignan compound isolated from Fructus Schisandra, is a potential antidiabetic and anti-Alzheimer’s agent. Recently, gomisin D was used as a quality marker of some traditional Chinese medicine (TCM) formulas. In this study, a rapid ultra-performance liquid chromatography/tandem mass spectrometry method (UPLC-MS/MS) was developed and validated to quantify gomisin D in rat plasma for a pharmacokinetic and bioavailability study. Acetonitrile was used to precipitate plasma proteins. Separations were performed on a BEH C18 column with a gradient mobile phase comprising of acetonitrile and water (0.1% formic acid). An electrospray ionization source was applied and operated in the positive ion mode. The multiple reaction monitoring mode (MRM) was utilized to quantify gomisin D and nomilin (internal standard, IS) using the transitions of m/z 531.2 → 383.1 and m/z 515.3 → 161.0, respectively. The calibration curve was linear over the working range from 1 to 4000 ng/mL (R2 = 0.993). The intra- and interday precision ranged from 1.9% to 12.9%. The extraction recovery of gomisin D was in the range of 79.2–86.3%. The validated UPLC-MS/MS method was then used to obtain the pharmacokinetic characteristics of gomisin D after intravenous (5 mg/kg) and intragastric (50 mg/kg) administration to rats. The bioavailability of gomisin D was 107.6%, indicating that this compound may become a promising intragastrical medication. Our results provided useful information for further preclinical studies on gomisin D.
Collapse
|