1
|
Ahmed MM, Anwer MK, Soliman GA, Aldawsari MF, Mohammed AA, Alshehri S, Ghoneim MM, Alali AS, Alshetaili A, Alalaiwe A, Bukhari SI, Zafar A. Application of hydrophilic polymers for the preparation of tadalafil solid dispersions: micromeritics properties, release and erectile dysfunction studies in male rats. PeerJ 2022; 10:e13482. [PMID: 35642201 PMCID: PMC9148559 DOI: 10.7717/peerj.13482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/02/2022] [Indexed: 01/17/2023] Open
Abstract
The objective of the present study was to improve the dissolution rate and aphrodisiac activity of tadalafil by using hydrophilic polymers. Solid dispersions were prepared by solvent evaporation-Rota evaporator using Koliphore 188, Kollidon® VA64, and Kollidon® 30 polymers in a 1:1 ratio. Prepared tadalafil-solid dispersions (SDs) evaluated for yield, drug content, micromeritics properties, physicochemical characterizations, and aphrodisiac activity assessment. The optimized SDs TK188 showed size (2.175 ± 0.24 µm), percentage of content (98.89 ± 1.23%), yield (87.27 ± 3.13%), bulk density (0.496 ± 0.005 g/cm3), true density (0.646 ± 0.003 g/cm3), Carr's index (23.25 ± 0.81), Hausner ratio (1.303 ± 0.003) and angle of repose (<25°). FTIR spectrums revealed tadalafil doesn't chemically interact with used polymers. XRD and DSC analysis represents TK188 SDs were in the amorphous state. Drug release was 97.17 ± 2.43% for TK188, whereas it was 32.76 ± 2.65% for pure drug at the end of 2 h with 2.96-fold increase in dissolution and followed release kinetics of Korsmeyer Peppa's model. MDT and DE were noted to be 17.48 minutes and 84.53%, respectively. Furthermore, TK188 SDs showed relative improvement in the sexual behavior of the male rats. Thus the developed SDs TK188 could be potential tadalafil carriers for the treatment of erectile dysfunction.
Collapse
Affiliation(s)
| | - Md Khalid Anwer
- Pharmaceutics, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Gamal A. Soliman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia,Department of Pharmacology, College of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Amer S. Alali
- Pharmaceutics, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Abdullah Alshetaili
- Pharmaceutics, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ahmed Alalaiwe
- Pharmaceutics, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf Saudi Arabia
| |
Collapse
|
2
|
De Stefani C, Lodovichi J, Albonetti L, Salvatici MC, Quintela JC, Bilia AR, Bergonzi MC. Solubility and Permeability Enhancement of Oleanolic Acid by Solid Dispersion in Poloxamers and γ-CD. Molecules 2022; 27:molecules27093042. [PMID: 35566392 PMCID: PMC9101807 DOI: 10.3390/molecules27093042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Oleanolic acid (OA) is a pentacyclic triterpenoid widely found in the Oleaceae family, and it represents 3.5% of the dry weight of olive leaves. OA has many pharmacological activities, such as hepatoprotection, anti-inflammatory, anti-oxidant, anti-diabetic, anti-tumor, and anti-microbic activities. Its therapeutic application is limited by its poor water solubility, bioavailability, and permeability. In this study, solid dispersions (SDs) were developed to overcome these OA limitations. Solubility studies were conducted to evaluate different hydrophilic polymers, drug-to-polymer ratios, and preparation methods. Poloxamer 188, Poloxamer 407, and γ-CD exhibited the highest increases in terms of OA solubility, regardless of the method of preparation. Binary systems were characterized using differential scanning calorimetry (DSC), X-ray diffraction (XRPD), and Fourier transform infrared spectroscopy (FTIR). In addition, pure compounds and SDs were analyzed using scanning electron microscopy (SEM) in order to observe both the morphology and the particle surface. In vitro dissolution studies were performed for P407, P188, and γ-CD SDs. Preparation using the solvent evaporation method (SEM) produced the highest increase in the dissolution profiles of all three polymers with respect to the OA solution. Finally, the effect of SDs on OA permeability was evaluated with an in vitro parallel artificial membrane permeability assay (PAMPA). The formulation improved passive permeation across the simulated barrier due to OA increased solubility. The dissolution and PAMPA results indicate that the amorphization of OA by SD preparation could be a useful method to enhance its oral absorption, and it is also applicable on an industrial scale.
Collapse
Affiliation(s)
- Chiara De Stefani
- Department of Chemistry, University of Florence, Via U Schiff 6, 50519 Sesto Fiorentino, Florence, Italy; (C.D.S.); (J.L.); (L.A.); (A.R.B.)
| | - Jessika Lodovichi
- Department of Chemistry, University of Florence, Via U Schiff 6, 50519 Sesto Fiorentino, Florence, Italy; (C.D.S.); (J.L.); (L.A.); (A.R.B.)
| | - Laura Albonetti
- Department of Chemistry, University of Florence, Via U Schiff 6, 50519 Sesto Fiorentino, Florence, Italy; (C.D.S.); (J.L.); (L.A.); (A.R.B.)
| | - Maria Cristina Salvatici
- National Research Council (CNR), Institute of Chemistry of Organometallic Compounds (ICCOM)—Electron Microscopy Centre (Ce.M.E.), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy;
| | | | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Via U Schiff 6, 50519 Sesto Fiorentino, Florence, Italy; (C.D.S.); (J.L.); (L.A.); (A.R.B.)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U Schiff 6, 50519 Sesto Fiorentino, Florence, Italy; (C.D.S.); (J.L.); (L.A.); (A.R.B.)
- Correspondence: ; Tel.: +39-055-457-3678
| |
Collapse
|
3
|
Fatima F, Aldawsari MF, Ahmed MM, Anwer MK, Naz M, Ansari MJ, Hamad AM, Zafar A, Jafar M. Green Synthesized Silver Nanoparticles Using Tridax Procumbens for Topical Application: Excision Wound Model and Histopathological Studies. Pharmaceutics 2021; 13:pharmaceutics13111754. [PMID: 34834169 PMCID: PMC8623640 DOI: 10.3390/pharmaceutics13111754] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to synthesize silver nanoparticles from the leaves of Tridax procumbens and develop its topical gels using chitosan to investigate the wound healing efficacy concomitant with the histopathological study. Green synthesized silver nanoparticles (AgNPs) were prepared by reacting silver nitrate (0.3 M) with leaf extract and characterized by particle analysis, FTIR, XRD, SEM, BET, and TGA. The results revealed formed AgNPs were nano-sized (138 ± 2.1 nm), monodispersed (PDI: 0.460 ± 0.3), inter-particle repulsion (zeta: −20.4 ± 5.20 mV), stabilized, crystalline and, spherical with size ranging from 80–100 nm as per SEM micro photos. The BET analysis of AgNPs presents the surface area (12.861 m2/g), pore volume (0.037 cc/g), and pore radius (24.50 nm).TGA results show a loss of 13.39% up to 300 °C. The topical formulation was developed by loading AgNPs in chitosan-based gels, evaluated by pH, thermal cycling, centrifugal, and spreadability tests. AgNPs chitosan gels results showed skin compatibility, higher stability, and spreading ability. The maximum antibacterial zone of inhibition was found to be 25 ± 0.98 mm for bacillus subtitles and 30 ± 1.99 mm for Klebsiella pneumoniae, respectively. Nanosilver-containing gel also showed excellent compatibility with erythrocytes. Excision wound model was used to assess the wound healing property of the developed AgNP gels, the results of which indicated a significantly progressive healing process in test-group of animals treated with chitosan-based gels containing AgNPs. A histopathological study further confirmed the almost normal skin structure of treated animal tissue compared to standard and negative control. Thus, green synthesized AgNPs loaded chitosan-based topical gel can potentially be used for wound healing application.
Collapse
Affiliation(s)
- Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.F.A.); (M.K.A.); (M.J.A.)
- Correspondence: (F.F.); (M.M.A.)
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.F.A.); (M.K.A.); (M.J.A.)
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.F.A.); (M.K.A.); (M.J.A.)
- Correspondence: (F.F.); (M.M.A.)
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.F.A.); (M.K.A.); (M.J.A.)
| | - Maimuna Naz
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.F.A.); (M.K.A.); (M.J.A.)
| | - Abubaker M. Hamad
- Basic Sciences Department, Preparatory Year Deanship, Prince Sattam Bin Abdulaziz University, P.O. Box 20337, Al-Kharj 11942, Saudi Arabia;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
| |
Collapse
|
4
|
Enhanced Dissolution of Sildenafil Citrate Using Solid Dispersion with Hydrophilic Polymers: Physicochemical Characterization and In Vivo Sexual Behavior Studies in Male Rats. Polymers (Basel) 2021; 13:polym13203512. [PMID: 34685271 PMCID: PMC8536963 DOI: 10.3390/polym13203512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
Sildenafil citrate (SLC) is a frequently used medication (Viagra®) for the treatment of erectile dysfunction (ED). Due to its poor solubility, SLC suffers from a delayed onset of action and poor bioavailability. Hence, the aim of the proposed work was to prepare and evaluate solid dispersions (SDs) with hydrophilic polymers (Kolliphor® P188, Kollidon® 30, and Kollidon®-VA64), in order to enhance the dissolution and efficacy of SLC. The SLC-SDs were prepared using a solvent evaporation method (at the ratio drug/polymer, 1:1, w/w) and characterized by Differential Scanning Calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscope (SEM), drug content, yield, and in vitro release studies. Based on this evaluation, SDs (SLC-KVA64) were optimized, with a maximum release of drug (99.74%) after 2 h for all the developed formulas. The SDs (SLC-KVA64) were further tested for sexual behavior activity in male rats, and significant enhancements in copulatory efficiency (81.6%) and inter-copulatory efficiency (44.9%) were noted in comparison to the pure SLC drug, when exposed to the optimized SLC-KVA64 formulae. Therefore, SD using Kollidon®-VA64 could be regarded as a potential strategy for improving the solubility, in vitro dissolution, and therapeutic efficacy of SLC.
Collapse
|